当前位置: 首页 > news >正文

腾讯mini项目-【指标监控服务重构】2023-08-23

今日已办

进度和问题汇总

  1. 请求合并
    1. feature/venus trace
    2. feature/venus metric
    3. feature/profile-otel-baserunner-style
    4. bugfix/profile-logger-Sync
    5. feature/profile_otelclient_enable_config
  2. 完成otel 开关
    1. trace-采样
    2. metrice-reader
  3. 已经都在各自服务器运行,并接入了云clickhouse集群,开始准备测试【详细需求】
    1. 测试的用例,并发的数目-【用例拓展-kafka的消息积压】
    2. clickhouse的哪些指标,cpu、内存,耗时等
    3. 以什么形式来输出这个性能对比?(表格or图形)
    4. 指标采集的性能消耗,复杂指标查询的消耗
    5. 对比对象-Jaeger
      1. 存储后端-elasticsearch 【手动部署或者购买】
      2. 收集存储,查询
      3. golang pprof 抓取文件 CPU 占用和耗时,内存-火焰图
      4. 不同方案做对比
    6. ck 的指标
      1. **数据库的延时,(五分钟)入库成功率 **【压测】
      2. 通过指标或者链路耗时,定位哪个环节卡住
      3. 压测 jaeger 数据收集出现问题-【qps】,降低配置,突出优势
      4. 内存和cpu占有,profile 手动收集指标
  4. profile服务器3301的端口
  5. watermill和baserunner的benmark,做得差不多了,修改了publisher用了kafka-client的异步生产者,耗时快了很多
  6. 需要启动其他监控工具(zipkin,jaeger【已经接入,正在尝试连入ck】,Prometheus等来进行对比吗)
  7. 一个优化代码中接入otel-sdk,如何减少显式声明,提高代码的可扩展性
    1. profile 已经将otel逻辑嵌入到baserunner的handler中
    2. venus 待办
    3. profile-watermill 待办

分工

  1. 测试用例 - 1
  2. jaeger - 2
  3. pprof - 1
  4. 测试对比两种方案的 clickhouse 指标
  5. docker-compose拉低配置

watermill-benchmark

代码实现

  1. 先初始化 producer
  2. watermill 初始化并启动 router / baserunner 初始化 consumer
  3. 在 for 循环中同步生产完固定数量的消息【开始计时】
  4. 阻塞等待固定数量的消息被消费,解析,处理,异步推回 kafka 完成【结束计时】
  5. 本机和服务器测试单个topic的100条消息的结果见下列表格
    1. watermill 的性能和资源利用率均好于 baserunner
    2. 核心数多的情况下,优势会更加明显
// Package consumer
// @Author xzx 2023/8/19 14:13:00
package internalimport ("context""fmt"kc "github.com/Kevinello/kafka-client""github.com/ThreeDotsLabs/watermill/message""github.com/ThreeDotsLabs/watermill/message/router/middleware""github.com/ThreeDotsLabs/watermill/message/router/plugin""github.com/bytedance/sonic""github.com/garsue/watermillzap""github.com/google/uuid""github.com/segmentio/kafka-go""go.uber.org/zap""go.uber.org/zap/zapcore""profile/cmd""profile/internal/config"baseconsumer "profile/internal/context/consumer""profile/internal/log""profile/internal/schema""profile/internal/watermill/consumer""profile/internal/watermill/watermillkafka""testing""time"
)// BenchmarkWatermill-16           240           5631314 ns/op         3684370 B/op           37997 allocs/op
// BenchmarkWatermill-16           153           7084305 ns/op         3706966 B/op           38168 allocs/op
// BenchmarkWatermill-16           145           6917486 ns/op         3712511 B/op           38175 allocs/op
func BenchmarkWatermill(b *testing.B) {router := newRouter()go func() {if err := router.Run(context.Background()); err != nil {log.Logger.Error("router run error", zap.Error(err))}}()producer := newProducer()time.Sleep(10 * time.Millisecond)b.ResetTimer()for i := 0; i < b.N; i++ {b.StopTimer()watermillkafka.MessageCount = 0err := publishMessage(producer, 100)if err != nil {break}b.StartTimer()// 阻塞等待消费完成指定数量for {if watermillkafka.MessageCount >= 100 && router.IsRunning() {b.StopTimer()log.Logger.Error("PubSub Count End", zap.Any("count", watermillkafka.MessageCount))break}}}b.StopTimer()router.Close()
}// BenchmarkBaseRunner-16         12         100429542 ns/op         4959836 B/op      42119 allocs/op
// BenchmarkBaseRunner-16         10         100110220 ns/op         4946421 B/op      42132 allocs/op
// BenchmarkBaseRunner-16         10         106747810 ns/op         4942656 B/op      42107 allocs/op
func BenchmarkBaseRunner(b *testing.B) {producer := newProducer()myConsumer, err := kc.NewConsumer(context.Background(),kc.ConsumerConfig{Bootstrap: config.Profile.GetString("kafka.bootstrap"),GroupID:   config.Profile.GetString("kafka.group"),GetTopics: func(broker string) (topics []string, err error) {return []string{"to_analyzer__0.PERF_CRASH","to_analyzer__0.PERF_LAG",}, nil},MessageHandler: cmd.ConsumerDispatchHandler,LogLevel:       int(zapcore.InfoLevel),},)if err != nil {log.Logger.Fatal("create consumer error", zap.Error(err))return}go func() {select {case <-myConsumer.Closed():log.Logger.Info("consumer Closed")return}}()time.Sleep(10 * time.Millisecond)b.ResetTimer()for i := 0; i < b.N; i++ {b.StopTimer()baseconsumer.ConsumeCount = 0err := publishMessage(producer, 100)if err != nil {break}b.StartTimer()// 阻塞等待消费完成指定数量for {if baseconsumer.ConsumeCount >= 100 {log.Logger.Error("PubSub Count End", zap.Any("count", baseconsumer.ConsumeCount))break}}}b.StopTimer()myConsumer.Closed()
}func publishMessage(producer *kc.Producer, nums int) (err error) {var event = &schema.Event{Meta: schema.Meta{AppID:    "1024",Category: "PERF_CRASH",Model:    "xiaomi13",DeviceID: "1b201ff9-5002-4fae-8d22-507a1c1a10b6",Os:       "ios",OsVer:    "13.1",UserID:   "28865194-fd08-480f-957d-ee9f21b32c3c",Version:  "100.24.56.7.19",Arch:     "aarch64",SdkVer:   "5.12.6",Platform: "ios",},Data: schema.Data{Time:         1688491757512,IP:           "119.147.10.203",ID:           "a4b838db-4f34-4da8-a27b-e725477ed336",NetType:      "5G",NetOp:        "CT",BatteryLevel: 92,PageID:       "com.tencent.test.page1",Dimensions: map[string]string{"crashed_thread": "com.tencent.thread1","crash_type":     "native","lose_data":      "true","repeat_occur":   "false",},Values: map[string]int64{"memory_free":  600,"memory_max":   1200,"memory_total": 1600,"remain_disk":  4000,},},VenusData: schema.VenusData{UploadTime: time.Now().UnixMilli(),BackendID:  uuid.NewString(),Country:    "China",Region:     "Guangdong",City:       "Shenzhen",},}topic := fmt.Sprintf("to_analyzer__0.%s", event.Category)messages := make([]kafka.Message, 0, nums)for i := 0; i < nums; i++ {event.UploadTime = time.Now().UnixMilli()event.BackendID = uuid.NewString()bytes, err := sonic.Marshal(event)if err != nil {fmt.Printf("failed to marshal event: %v\n", err)}messages = append(messages, kafka.Message{Topic: topic,Value: bytes,})}if err = producer.WriteMessages(context.Background(), messages...); err != nil {fmt.Printf("failed to write messages: %v\n", err)}return
}func newProducer() *kc.Producer {eventKafkaConfig := &kc.ProducerConfig{Bootstrap:              "127.0.0.1:9092",Async:                  false,AllowAutoTopicCreation: true,Logger:                 &log.LogrLogger,}producer, err := kc.NewProducer(context.Background(), *eventKafkaConfig)if err != nil {panic("cannot connect to kafka with address 127.0.0.1:9092")}return producer
}func newRouter() *message.Router {logger := watermillzap.NewLogger(log.Logger)publisher, subscriber := consumer.NewPubSub(logger)router, err := message.NewRouter(message.RouterConfig{}, logger)if err != nil {log.Logger.Fatal("create router error", zap.Error(err))}router.AddPlugin(plugin.SignalsHandler)router.AddMiddleware(middleware.InstantAck,middleware.Recoverer,)router.AddMiddleware(consumer.UnpackKafkaMessage, consumer.InitPerformanceEvent, consumer.AnalyzeEvent)router.AddHandler("crash", "to_analyzer__0.PERF_CRASH", subscriber, "solar-dev.PERF_CRASH", publisher, consumer.CrashHandler)router.AddHandler("lag", "to_analyzer__0.PERF_LAG", subscriber, "solar-dev.PERF_LAG", publisher, consumer.LagHandler)return router
}

本地测试

BenchmarkWatermill-16BenchmarkBaseRunner-16
240 563,1314 ns/op 368,4370 B/op 3,7997 allocs/op12 1,0042,9542 ns/op 495,9836 B/op 4,2119 allocs/op
153 708,4305 ns/op 370,6966 B/op 3,8168 allocs/op10 1,0011,0220 ns/op 494,6421 B/op 4,2132 allocs/op
145 691,7486 ns/op 371,2511 B/op 3,8175 allocs/op10 1,0674,7810 ns/op 1,0674,7810 B/op 4,2107 allocs/op

服务器上测试

image-20230823202739491

image-20230823204753051

单个topic的100条消息

BenchmarkWatermill-4BenchmarkBaseRunner-4
10 4339,8240 ns/op 363,0762 B/op 3,7820 allocs/op25 4616,7095 ns/op 315,8836 B/op 3,9902 allocs/op
78 4065,2822 ns/op 360,0755 B/op 3,7893 allocs/op26 4330,6776 ns/op 317,8770 B/op 3,9880 allocs/op
100 3549,3863 ns/op 360,5322 B/op 3,7899 allocs/op100 4489,2327 ns/op 316,3158 B/op 3,9775 allocs/op
386 1427,4034 ns/op 358,7454 B/op 3,7876 allocs/op10000 4949,4435 ns/op 319,7664 B/op 3,9874 allocs/op

本地测试单个topic的100条消息

testb.nns/opB/opallocs/op
BenchmarkWatermill-161537084305370696638168
BenchmarkWatermill-161456917486371251138175
BenchmarkBaseRunner-1610100110220494642142132
BenchmarkBaseRunner-161010674781010674781042107

服务器测试单个topic的100条消息

testb.nns/opB/opallocs/op
BenchmarkWatermill-47840652822360075537893
BenchmarkBaseRunner-42643306776317877039880

明日待办

  1. 协助部署 jaeger

相关文章:

腾讯mini项目-【指标监控服务重构】2023-08-23

今日已办 进度和问题汇总 请求合并 feature/venus tracefeature/venus metricfeature/profile-otel-baserunner-stylebugfix/profile-logger-Syncfeature/profile_otelclient_enable_config 完成otel 开关 trace-采样metrice-reader 已经都在各自服务器运行&#xff0c;并接入…...

C- ssize_t size_t

size_t 和 ssize_t 都是在 C 和 C 的标准库中定义的数据类型&#xff0c;它们通常用于表示大小和长度。然而&#xff0c;它们有关键的区别。 size_t: 定义&#xff1a;size_t 是一个无符号整数类型&#xff0c;它是适合表示对象的大小的类型。在 POSIX 中&#xff0c;它也用于…...

ubuntu20.04 Supervisor 开机自启动脚本一文配置

前言: 最近发现一种非常好的开机启动服务方式,不光可以开机自启动,而且还可以进行开机节点的进程守护,这样大大确保了线程的稳定情况,这种服务甚至可以守护开机的进程,所以比之前设置 rc.local 开机自启动脚本一文配置节点好出很多,它甚至可以使用网页登录监管我开机自启…...

【面试刷题】——函数指针和指针函数

“函数指针”&#xff08;function pointer&#xff09;和 “指针函数”&#xff08;pointer to function&#xff09;是两个不同的概念&#xff0c;它们涉及到指针和函数的结合使用。 函数指针&#xff08;Function Pointer&#xff09;&#xff1a; 函数指针是指向函数的指…...

目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)

目标分类 一、目标分类介绍1.1 二分类和多分类的区别1.2 单标签和多标签输出的区别 二、代码获取三、数据集准备四、环境搭建4.1 环境测试 五、模型训练六、模型测试6.1 多标签训练-单标签输出结果6.2 多标签训练-多标签输出结果 一、目标分类介绍 目标分类是一种监督学习任务…...

【100天精通Python】Day61:Python 数据分析_Pandas可视化功能:绘制饼图,箱线图,散点图,散点图矩阵,热力图,面积图等(示例+代码)

目录 1 Pandas 可视化功能 2 Pandas绘图实例 2.1 绘制线图 2.2 绘制柱状图 2.3 绘制随机散点图 2.4 绘制饼图 2.5 绘制箱线图A 2.6 绘制箱线图B 2.7 绘制散点图矩阵 2.8 绘制面积图 2.9 绘制热力图 2.10 绘制核密度估计图 1 Pandas 可视化功能 pandas是一个强大的数…...

2023华为产品测评官-开发者之声 | 华为云CodeArts征文活动,多重好礼邀您发声!

"2023华为产品测评官&#xff0d;开发者之声"活动激发了众多开发者和技术爱好者的热情&#xff0c;他们纷纷递交了精心编写的产品测评报告。活动社群充满活力&#xff0c;参与者们热衷于交流讨论&#xff0c;互相帮助解决问题&#xff0c;一起探索云技术的无限可能。…...

Python 图形化界面基础篇:获取文本框中的用户输入

Python 图形化界面基础篇&#xff1a;获取文本框中的用户输入 引言 Tkinter 库简介步骤1&#xff1a;导入 Tkinter 模块步骤2&#xff1a;创建 Tkinter 窗口步骤3&#xff1a;创建文本框步骤4&#xff1a;获取文本框中的用户输入步骤5&#xff1a;启动 Tkinter 主事件循环 完整…...

【驱动开发】实现三盏灯的控制,编写应用程序测试

head.h #ifndef __HEAD_H__ #define __HEAD_H__//LED1:PE10 //LED2:PF10 //LED3:PE8#define LED_RCC 0X50000A28 //使能GPIO#define LED_MODER 0X50006000 //设置输出模式 #define LED_ODR 0X50006014 //设置输出高低电平#define LED2_MODER 0X50007000 …...

Vue3+ElementUI使用

<!DOCTYPE html> <html> <head><meta charset"UTF-8"><meta name"viewport" content"initial-scale1.0,maximum-scale1.0,minimum-scale1.0,user-scalable0, widthdevice-width"/><!-- 引入样式 --><lin…...

MySQL 和 MariaDB 版本管理的历史背景及差异

目录 MariaDB MySQL 差异 关于 SQLE SQLE 获取 ​ 了解更多 需要说明的是 MySQL 和 MariaDB 都有社区版和企业版。对于 MySQL&#xff0c;这两个版本都是由同一家公司&#xff08;Oracle&#xff09;提供&#xff0c;遵循相同的版本编号体系&#xff0c;企业版包含更丰富…...

linux驱动开发--day4(字符设备驱动注册内部流程、及实现备文件和设备的绑定下LED灯实验)

一、字符设备驱动注册的内部过程 1.分配struct cdev对象空间 2.初始化struct cdev对象 3.注册cdev对象 二、注册字符设备驱动分步实现 1.分配字符设备驱动对象 2.字符设备驱动对象初始化 3.设备号的申请 4.根据申请的设备号和驱动对象注册驱动 三、open函数回调驱动中…...

elasticsearch5-RestAPI操作

个人名片&#xff1a; 博主&#xff1a;酒徒ᝰ. 个人简介&#xff1a;沉醉在酒中&#xff0c;借着一股酒劲&#xff0c;去拼搏一个未来。 本篇励志&#xff1a;三人行&#xff0c;必有我师焉。 本项目基于B站黑马程序员Java《SpringCloud微服务技术栈》&#xff0c;SpringCloud…...

数据结构与算法(一)

文章目录 数据结构与算法(一)1 位运算、算法是什么、简单排序1.1 实现打印一个整数的二进制1.2 给定一个参数N,返回1!+2!+3!+4!+...+N!的结果1.3 简单排序算法2 数据结构大分类、前缀和、对数器2.1 实现前缀和数组2.2 如何用1\~5的随机函数加工出1\~7的随机函数2.3 如何把不…...

Matlab--微积分问题的计算机求解

目录 1.单变量函数的极限问题 1.1.公式例子 1.2.对应例题 1 2.多变量函数的极限问题 3.函数导数的解析解 4.多元函数的偏导数 5.Jacobian函数 6.Hessian矩阵 7.隐函数的偏导 8.不定积分问题的求解 9.定积分的求解问题 10. 多重积分的问题求解 1.单变量函数的极限问题 …...

GRU实现时间序列预测(PyTorch版)

&#x1f4a5;项目专栏&#xff1a;【深度学习时间序列预测案例】零基础入门经典深度学习时间序列预测项目实战&#xff08;附代码数据集原理介绍&#xff09; 文章目录 前言一、基于PyTorch搭建GRU模型实现风速时间序列预测二、时序数据集的制作三、数据归一化四、数据集加载器…...

文本框粘贴时兼容Unix、Mac换行符的方法源码

本篇文章属于《518抽奖软件开发日志》系列文章的一部分。 我在开发《518抽奖软件》&#xff08;www.518cj.net&#xff09;的时候&#xff0c;要在文本框粘贴从别处复制来的名单。发现一个问题&#xff0c;就是一些Unix传过来的多行文本&#xff0c;粘贴后都变成了一行。原来&a…...

2023年华为杯研究生数学建模竞赛辅导

2023年华为杯研究生数学建模竞赛辅导 各研究生培养单位&#xff1a; 中国研究生数学建模竞赛作为教育部学位管理与研究生教育司指导&#xff0c;中国学位与研究生教育学会、中国科协青少年科技中心主办的“中国研究生创新实践系列大赛”主题赛事之一&#xff0c;是一项面向在校…...

post更新,put相当于删除重新增一条

索引数据 //删除后新增 PUT my_dynamic_temp/_doc/1 { “name”:“test”, “class”:“1204” } //覆盖更新 POST my_dynamic_temp/_update/1 { “doc”: { “name”:“test”, “class”:“1203”, “pernum”:“998” } }...

python责任链模式

责任链模式是一种行为设计模式&#xff0c;它允许你将请求沿着处理者链进行传递&#xff0c;直到有一个处理者能够处理它为止。在Python中&#xff0c;你可以使用多线程来实现责任链模式的框架。 首先&#xff0c;你需要定义一个基础的处理者类&#xff0c;它包含处理请求的方…...

大数据技术准备

Hbase&#xff1a;HBase 底层原理详解&#xff08;深度好文&#xff0c;建议收藏&#xff09; - 腾讯云开发者社区-腾讯云 Hbase架构图 同一个列族如果有多个store&#xff0c;那么这些store在不同的region Hbase写流程&#xff08;读比写慢&#xff09; MemStore Flush Hbas…...

【力扣周赛】第 362 场周赛(⭐差分匹配状态压缩DP矩阵快速幂优化DPKMP)

文章目录 竞赛链接Q1&#xff1a;2848. 与车相交的点解法1——排序后枚举解法2——差分数组⭐差分数组相关题目列表&#x1f4d5;1094. 拼车1109. 航班预订统计2381. 字母移位 II2406. 将区间分为最少组数解法1——排序贪心优先队列解法2——差分数组 2772. 使数组中的所有元素…...

四大函数式接口(重点,必须掌握)

新时代程序员必须要会的 &#xff1a;lambda表达式、链式编程、函数式接口、Stream流式计算 什么是函数式接口 1.函数型接口 package com.kuang.function;import java.util.function.Function;/*** Function函数型接口 有一个输入参数&#xff0c;有一个输出* 只要是函数式接口…...

2023Web前端逻辑面试题

1、现有9个小球&#xff0c;已知其中一个球比其它的重&#xff0c;如何只用天平称2次就找出该球&#xff1f; ①把9个球分成三份&#xff0c;三个一份&#xff1b; ②拿出其中两份进行称量&#xff1b;会分为两种情况 若拿出的两份小球称量结果&#xff0c;重量相等&#xff1b…...

uniapp中git忽略node_modules,unpackage文件

首先在当前项目的命令行新建.gitignore文件&#xff1a; touch .gitignore再在编辑器中打开该文件&#xff0c;并在该文件中加入需要忽略的文件名&#xff1a; node_modules/ .project unpackage/ .DS_Store 提示&#xff1a;如果以前提交过unpackage文件的话&#xff0c;需…...

Json-Jackson和FastJson

狂神&#xff1a; 测试Jackson 纯Java解决日期格式化 设置ObjectMapper FastJson&#xff1a; 知乎&#xff1a;Jackson使用指南 1、常见配置 方式一&#xff1a;yml配置 spring.jackson.date-format指定日期格式&#xff0c;比如yyyy-MM-dd HH:mm:ss&#xff0c;或者具体的…...

RK3588 点亮imx586摄像头

一.硬件原理图 mipi摄像头硬件确认点&#xff1a; 1.供电&#xff1a;5V&#xff0c;2.8V&#xff0c;1.2V&#xff0c;1.8V&#xff0c;reset脚&#xff08;硬拉3.3&#xff0c;上电的时候从低到高&#xff09;&#xff0c;pwron脚外接 3.3V。 2,时钟&#xff1a;MCLKOUT是2…...

C++---继承

继承 前言继承的概念及定义继承的概念继承定义继承关系和访问限定符 基类和派生类对象赋值转换继承中的作用域派生类的默认成员函数继承与友元继承与静态成员**多重继承**多继承下的类作用域菱形继承虚继承使用虚基类 支持向基类的常规类型转换 前言 在需要写Father类和Mother…...

使用新版Maven-mvnd快速构建项目

目前我们项目的构建方式多数是 maven、gradle&#xff0c;但是 maven 相对 gradle 来说&#xff0c;构建速度较慢&#xff0c;特别是模块相对较多的时候&#xff0c;构建速度更加明显。但是我们将项目由 maven 替换为 gradle 相对来说会比较麻烦&#xff0c;成本较高。于是我们…...

【ICASSP 2023】ST-MVDNET++论文阅读分析与总结

主要是数据增强的提点方式。并不能带来idea启发&#xff0c;但对模型性能有帮助 Challenge&#xff1a; 少有作品应用一些全局数据增强&#xff0c;利用ST-MVDNet自训练的师生框架&#xff0c;集成了更常见的数据增强&#xff0c;如全局旋转、平移、缩放和翻转。 Contributi…...

集团公司网站模板/微信客户管理系统平台

计算机网络期末考试试卷及答案模板试卷号&#xff1a; 座位号:201 —201 学年度第一学期期末考试《计算机网络》试题A卷2013年 月题 号一二三四五总 分分 数得分 评卷人一、单项选择题(每小题2分&#xff0c;共30分)1&#xff0e;对于IP地址为 7的主机来说&#xff0c;其网络号…...

查企业去哪个网站/网络推广员是干嘛的

我的上篇博客【我心目中的Asp.net核心对象】 讲述了一些我认为在Asp.net中比较重要的核心对象&#xff0c;以及演示了直接使用它们也能实现一个简单的服务响应。今天&#xff0c;我将继续把我认为Asp.net的另一些重要的内容拿出来与大家一起分享&#xff0c; 同时将使用本次所讲…...

wordpress 快速填写qq/百度关键词优化和百度推广

一、示例概述本篇博客的示例比较简单&#xff0c;其实就是使用Runtime的方法交换来实现AOP面向切面编程。下方这两个文件就是我们本篇博客所涉及的核心文件。TestClass顾名思义就是我们的测试类&#xff0c;而TestClassLogging就是TestClass的切片&#xff0c;TestClassLogging…...

如何快速建设自适应网站/深圳网络营销策划

本节书摘来自华章计算机《大数据架构和算法实现之路&#xff1a;电商系统的技术实战》一书中的第2章&#xff0c;第2.4节&#xff0c;作者 黄 申&#xff0c;更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.4 案例实践 2.4.1 使用R进行K均值聚类 在实践部分&…...

雅虎网站收录提交入口/千锋教育的口碑怎么样

为什么80%的码农都做不了架构师&#xff1f;>>> 微服务需要考虑的几点内容, :) 团队规模 团队成员能否围坐在一张桌边&#xff1f; Yes&#xff01; -- 你可能不需要微服务 好文档和好设计可以轻易解决部署等运维操作中遇到的挑战。而微服务要解决的问题你还没有遇…...

wordpress顶部加载条/衡阳网站建设

1、对于N枚硬币每次翻转N-1枚&#xff0c;等价于有一枚硬币没有翻转&#xff0c;也等价于一枚硬币翻转了&#xff0c;那么对于第一个问题&#xff1a;最少次数也就是N次&#xff08;直接输出&#xff09; 2、对于N枚硬币翻N-1枚的理解&#xff1a;把整个过程分拆成两个步骤 1&a…...