大模型从入门到应用——LangChain:代理(Agents)-[代理执行器(Agent Executor):结合使用Agent和VectorStore]
分类目录:《大模型从入门到应用》总目录
代理执行器接受一个代理和工具,并使用代理来决定调用哪些工具以及以何种顺序调用。本文将参数如何结合使用Agent和VectorStore。这种用法是将数据加载到VectorStore中,并希望以Agent的方式与之进行交互。
推荐的方法是创建一个RetrievalQA,然后将其作为整体Agent中的工具来使用。让我们在下面看一下如何实现,我们可以使用多个不同的vectordbs,将Agent作为它们之间的路由器。有两种不同的方法可以实现这一点:
- 让Agent像正常工具一样使用
vectorstores - 设置
return_direct=True来将Agent真正用作路由
创建VectorStore
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
llm = OpenAI(temperature=0)
from pathlib import Path
relevant_parts = []
for p in Path(".").absolute().parts:relevant_parts.append(p)if relevant_parts[-3:] == ["langchain", "docs", "modules"]:break
doc_path = str(Path(*relevant_parts) / "state_of_the_union.txt")
from langchain.document_loaders import TextLoader
loader = TextLoader(doc_path)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_documents(texts, embeddings, collection_name="state-of-union")
日志输出:
Running Chroma using direct local API.
Using DuckDB in-memory for database. Data will be transient.
state_of_union = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=docsearch.as_retriever())
输入:
from langchain.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://beta.ruff.rs/docs/faq/")
docs = loader.load()
ruff_texts = text_splitter.split_documents(docs)
ruff_db = Chroma.from_documents(ruff_texts, embeddings, collection_name="ruff")
ruff = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=ruff_db.as_retriever())
日志输出:
Running Chroma using direct local API.
Using DuckDB in-memory for database. Data will be transient.
创建代理
# Import things that are needed generically
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.tools import BaseTool
from langchain.llms import OpenAI
from langchain import LLMMathChain, SerpAPIWrapper
tools = [Tool(name = "State of Union QA System",func=state_of_union.run,description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question."),Tool(name = "Ruff QA System",func=ruff.run,description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question."),
]
# Construct the agent. We will use the default agent type here.
# See documentation for a full list of options.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What did biden say about ketanji brown jackson in the state of the union address?")
日志输出:
Entering new AgentExecutor chain...
I need to find out what Biden said about Ketanji Brown Jackson in the State of the Union address.
Action: State of Union QA System
Action Input: What did Biden say about Ketanji Brown Jackson in the State of the Union address?
Observation: Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.
Thought:I now know the final answer
Final Answer: Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.Finished chain.
输出:
"Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence."
输入:
agent.run("Why use ruff over flake8?")
输出:
Entering new AgentExecutor chain...
I need to find out the advantages of using ruff over flake8
Action: Ruff QA System
Action Input: What are the advantages of using ruff over flake8?
Observation: Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.
Thought:I now know the final answer
Final Answer: Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.Finished chain.
输出:
'Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.'
仅将Agent用作路由器
如果我们打算将Agent用作路由,并且只想直接返回RetrievalQAChain的结果,我们还可以设置return_direct=True。
需要注意的是,在上面的示例中,Agent在查询RetrievalQAChain之后还做了一些额外的工作,我们可以避免这样做,直接返回结果。
tools = [Tool(name = "State of Union QA System",func=state_of_union.run,description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.",return_direct=True),Tool(name = "Ruff QA System",func=ruff.run,description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.",return_direct=True),
]
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What did biden say about ketanji brown jackson in the state of the union address?")
日志输出:
Entering new AgentExecutor chain...
I need to find out what Biden said about Ketanji Brown Jackson in the State of the Union address.
Action: State of Union QA System
Action Input: What did Biden say about Ketanji Brown Jackson in the State of the Union address?
Observation: Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.Finished chain.
输出:
" Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence."
输入:
agent.run("Why use ruff over flake8?")
日志输出:
Entering new AgentExecutor chain...
I need to find out the advantages of using ruff over flake8
Action: Ruff QA System
Action Input: What are the advantages of using ruff over flake8?
Observation: Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.Finished chain.
输出:
' Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.'
多跳向量存储推理
由于vectorstores可以很容易地作为Agent中的工具使用,因此可以轻松使用现有的Agent框架回答依赖于vectorstores的多跳问题。
tools = [Tool(name = "State of Union QA System",func=state_of_union.run,description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question, not referencing any obscure pronouns from the conversation before."),Tool(name = "Ruff QA System",func=ruff.run,description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question, not referencing any obscure pronouns from the conversation before."),
]
# Construct the agent. We will use the default agent type here.
# See documentation for a full list of options.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What tool does ruff use to run over Jupyter Notebooks? Did the president mention that tool in the state of the union?")
日志输出:
Entering new AgentExecutor chain...
I need to find out what tool ruff uses to run over Jupyter Notebooks, and if the president mentioned it in the state of the union.
Action: Ruff QA System
Action Input: What tool does ruff use to run over Jupyter Notebooks?
Observation: Ruff is integrated into nbQA, a tool for running linters and code formatters over Jupyter Notebooks. After installing ruff and nbqa, you can run Ruff over a notebook like so: > nbqa ruff Untitled.ipynb
Thought:I now need to find out if the president mentioned this tool in the state of the union.
Action: State of Union QA System
Action Input: Did the president mention nbQA in the state of the union?
Observation: No, the president did not mention nbQA in the state of the union.
Thought:I now know the final answer.
Final Answer: No, the president did not mention nbQA in the state of the union.Finished chain.
输出:
'No, the president did not mention nbQA in the state of the union.'
参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/
相关文章:
大模型从入门到应用——LangChain:代理(Agents)-[代理执行器(Agent Executor):结合使用Agent和VectorStore]
分类目录:《大模型从入门到应用》总目录 代理执行器接受一个代理和工具,并使用代理来决定调用哪些工具以及以何种顺序调用。本文将参数如何结合使用Agent和VectorStore。这种用法是将数据加载到VectorStore中,并希望以Agent的方式与之进行交互…...
【算法题】100040. 让所有学生保持开心的分组方法数
题目: 给你一个下标从 0 开始、长度为 n 的整数数组 nums ,其中 n 是班级中学生的总数。班主任希望能够在让所有学生保持开心的情况下选出一组学生: 如果能够满足下述两个条件之一,则认为第 i 位学生将会保持开心: …...
TrOCR – 基于 Transformer 的 OCR 入门
一、TrOCR 架构 近些年,光学字符识别 (OCR) 出现了多项创新。它对零售、医疗保健、银行和许多其他行业的影响是巨大的。与深度学习的许多其他领域一样,OCR领域也看到了Transformer 神经网络的重要性和影响。如今,出现了像TrOCR(Transformer OCR)这样的模型,它在准确性方面…...
单例模式优缺点
单例模式是一种创建型设计模式,其主要目的是确保类只有一个实例,并提供全局访问点来获取该实例。单例模式具有一些优点和缺点,下面我将列出它们: **优点:** 1. **全局唯一性**:单例模式确保在应用程序中只…...
【Java 基础篇】Java 字节流详解:从入门到精通
Java中的字节流是处理二进制数据的关键工具之一。无论是文件操作、网络通信还是数据处理,字节流都发挥着重要作用。本文将从基础概念开始,深入探讨Java字节流的使用,旨在帮助初学者理解和掌握这一重要主题。 什么是字节流? 在Ja…...
Vue记录(下篇)
Vuex getters配置项 *Count.vue <template><div><h1>当前求和为:{{$store.state.sum}}</h1><h3>当前求和的10倍为:{{$store.getters.bigSum}}</h3><select v-model.number"n"><option value&q…...
【测试开发】概念篇 · 测试相关基础概念 · 常见开发模型 · 常见测试模型
【测试开发】概念篇 文章目录 【测试开发】概念篇1. 什么是需求1.1 需求的定义1.2 为什么有需求1.3 测试人员眼里的需求1.4 如何深入了解需求 2. 什么是测试用例2.1 为什么有测试用例2.2 练习>手机打电话 3. 什么是bug4. 开发模型和测试模型4.1 软件生命周期4.2 开发模型4.3…...
1. 快速体验 VSCode 和 CMake 创建 C/C++项目
1. 快速体验 VSCode 和 CMake 创建 C/C项目 本章的全部代码和markdown文件地址: CMake_Tutorial,欢迎互相交流. 此次介绍的内容都是针对于 Linux 操作系统上的开发过程. 1.1 安装开发工具 VSCode: 自行下载安装, 然后安装插件 Cmake:在 Ubuntu 系统上, 可以采用 ap…...
【JAVA-Day18】用大白话讲解 Java 中的内存机制
标题 用大白话讲解 Java 中的内存机制摘要引言一、Java 内存机制1.1 栈内存1.2 堆内存 二、Java 如何管理内存三、合理管理内存的必要性与其他方式相比优势劣势建议四、总结参考资料 博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客👦🏻 《…...
[Hadoop] start-dfs.sh ssh报错
Permission denied (publickey 决解方案 相关命令 cd ~/.sshssh-keygen -t rsa -p""cat id_rsa.pub >> authorized_keyschmod 0600 authorized_keys 相关链接Hadoop: start-dfs.sh permission denied - Stack Overflow Java HotSpot(TM) Server VM warning…...
amlogic 多wifi 多bluetooh 兼容方案
WiFi部分: vendor/amlogic/common/wifi_bt/wifi/configs/wifi.mk 或者 hardware/amlogic/wifi/configs/wifi.mk ################################################################################## realtek wifi ifneq ($(filter rtl8188eu rtl8188ftv rtl8192eu rtl8…...
Apache Hive概述,模拟实现Hive功能,Hive基础架构
1、Apache Hive 概述 1.1、分布式SQL计算 对数据进行统计分析,SQL是目前最为方便的编程工具。 大数据体系中充斥着非常多的统计分析场景 所以,使用SQL去处理数据,在大数据中也是有极大的需求的。 MapReduce支持程序开发(Java…...
postgresql|数据库|centos7下基于postgresql-12的主从复制的pgpool-4.4的部署和使用
前言: postgresql数据库只用自身的一些配置是无法做到最优的优化的,需要通过一些外置插件(中间件)来提高服务器的整体性能,通俗的说就是数据库仅仅依靠自身是无法达到性能最优的,很多时候需要更改数据库的…...
python之pyQt5实例:PyQtGraph的应用
1、显示逻辑 "MainWindow": "这是主窗口,所有的其他组件都会被添加到这个窗口上。", "centralwidget": "这是主窗口的中心部件,它包含了其他的部件。","pushButton": "这是一个按钮,…...
Java——键盘输入的几种常见方式
Java——键盘输入的几种常见方式 文章目录: Java——键盘输入的几种常见方式一、IO流二、Scanner类三 、BufferedReader写入 一、IO流 在Java的输入中,是以输入流的形式进入程序,因此无法直接指定输入的类型,仅能读取键盘上的内容…...
Shell脚本中文英文多语言国际化和命令行批处理(bash sh cmd bat)中定义函数的简单写法
文章目录 命令行脚本参考 - bat命令行脚本参考 - bash值得学习的知识点1. 识别终端使用的语言2. 函数的编写3. 获取用户的输入4. bat文件老是乱码怎么办 有时候为了方便别人使用,我们会选择去编写各种各样的命令行脚本:给Windows用户编写.bat cmd批处理脚…...
stringBuffer.append(analyze);使用这个拼接时候如何在字符串参数字符串参数整数参数字符串数组参数内容之间添加空格
stringBuffer.append(analyze);使用这个拼接时候如何在字符串参数字符串参数整数参数字符串数组参数内容之间添加空格? 在添加参数到 StringBuffer 时,你可以在每次添加参数之后都添加一个空格,如下所示: StringBuffer stringBu…...
点云从入门到精通技术详解100篇-大范围田间场景 3D 点云语义分割研究(续)
目录 3.2 自制数据集展示 3.2.1 收集航拍图像 3.2.2 3D 点云重建 3.2.3 语义标签标注...
Mysql详解Explain索引优化最佳实践
目录 1 Explain工具介绍2 explain 两个变种3 explain中的列3.1 id列3.2 select_type列3.3 table列3.4. type列3.5 possible_keys列3.6 key列3.7 key_len列3.8 ref列3.9 rows列3.10 Extra列 4 索引最佳实践4.1.全值匹配4.2.最左前缀法则4.3.不在索引列上做任何操作(计…...
STM32H7 Azure RTOS
STM32H7 是意法半导体(STMicroelectronics)推出的一款高性能微控制器系列,基于 Arm Cortex-M7 内核。它具有丰富的外设和高性能计算能力,适用于各种应用领域。 Azure RTOS(原名 ThreadX)是一款实时操作系统…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
