当前位置: 首页 > news >正文

FPGA-结合协议时序实现UART收发器(五):串口顶层模块UART_TOP、例化PLL、UART_FIFO、uart_drive

FPGA-结合协议时序实现UART收发器(五):串口顶层模块UART_TOP、例化PLL、UART_FIFO、uart_drive

串口顶层模块UART_TOP、例化PLL、UART_FIFO、uart_drive,功能实现。


文章目录

  • FPGA-结合协议时序实现UART收发器(五):串口顶层模块UART_TOP、例化PLL、UART_FIFO、uart_drive
  • 一、功能实现
  • 一、UART_TOP代码
  • 总结


一、功能实现

对照代码,串口发送模块UART_TOP实现功能包括:

  • PLL锁相环,实现稳定系统输入时钟功能
  • UART_FIFO,数据先进先出,实现数据缓存功能,防止出现数据错乱
  • w_clk_rst = ~w_system_pll_locked;保证复位电平是先高位再地位
  • r_user_tx_ready,用户输出ready信号慢一拍,用于判断数据是否发送完毕,是否为结束状态
  • r_rden_lock,fifo使能锁控制
  • r_fifo_rden,fifo读使能情况
  • r_uart_tx_vaild比FIFO中的读使能r_fifo_rden慢一拍,为实现有效信号和数据能够匹配上,所以对有效信号进行打一拍来延迟一个周期,从而实现信号和数据匹配,正确获取数据

一、UART_TOP代码

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/09/09 13:13:15
// Design Name: 
// Module Name: UART_TOP
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//不要直接用系统时钟!!!
//要添加一个pll锁相环,进行滤波稳定时钟,方便后续处理
//module UART_TOP(//模块输入输出input       i_clk       ,input       i_uart_rx   ,output      o_uart_tx   );wire                    w_clk_50Mhz;
wire                    w_clk_rst;
wire                    w_system_pll_locked;wire    [7:0]           w_user_tx_data;
wire                    w_user_tx_ready;
wire    [7:0]           w_user_rx_data;
wire                    w_user_rx_vaild;
wire                    w_user_clk;
wire                    w_user_rst;
wire                    w_fifo_empty;
reg                     r_fifo_rden;
reg                     r_uart_tx_vaild;
reg                     r_rden_lock;//fifo使能锁
reg                     r_user_tx_ready;//pll锁存器在时钟不稳定的时候是低电平,在稳定后是高电平,即先低电平后高电平
//系统中习惯使用复位信号先高后低,即上电先高电平进行复位,然后再低电平,故需进行取反
assign w_clk_rst = ~w_system_pll_locked;system_pll system_pll_u0
(.clk_in1                        (i_clk),      // input clk_in1.clk_out1                       (w_clk_50Mhz),     // output clk_out1.locked                         (w_system_pll_locked)       // output locked
);uart_drive#(//串口可调参数.P_SYSTEM_CLK                  (50_000_000),.P_UART_BUADRATE               (115200),.P_UART_DATA_WIDTH             (8),.P_UART_STOP_WIDTH             (1),.P_UART_CHECK                  (0)
)
uart_drive_u0( //串口驱动输入输出.i_clk                         (w_clk_50Mhz),.i_rst                         (w_clk_rst),.i_uart_rx                     (i_uart_rx),.o_uart_tx                     (o_uart_tx),.i_user_tx_data                (w_user_tx_data),//用户输出数据,作为驱动的输入,即先输入到驱动处理再输出.i_user_tx_vaild               (r_uart_tx_vaild),//握手.o_user_tx_ready               (w_user_tx_ready),.o_user_rx_data                (w_user_rx_data),//用户输入数据,作为驱动的输出,即先经过驱动输出再输入到用户.o_user_rx_vaild               (w_user_rx_vaild),.o_user_clk                    (w_user_clk),.o_user_rst                    (w_user_rst));UART_FIFO UART_FIFO_U0 (.clk          (w_user_clk),      // input wire clk.srst         (w_user_rst),    // input wire srst.din          (w_user_rx_data),      // input wire [7 : 0] din.wr_en        (w_user_rx_vaild),  // input wire wr_en.rd_en        (r_fifo_rden),  // input wire rd_en.dout         (w_user_tx_data),    // output wire [7 : 0] dout.full         (),    // output wire full.empty        (w_fifo_empty)  // output wire empty
);//处理用户输出ready信号慢一拍
//用于判断数据是否发送完毕,是否为结束状态
always @(posedge w_user_clk or posedge w_user_rst)
beginif(w_user_rst)r_user_tx_ready <= 'd0;elser_user_tx_ready <= w_user_tx_ready;end//处理fifo使能控制,使能锁r_rden_lock
//防止fifo使能持续两个周期,导致读取两个数据,但握手只会读取一个数据,就会导致数据丢失,故需要使能锁控制来fifo只持续一个周期
always @(posedge w_user_clk or posedge w_user_rst)
beginif(w_user_rst)                                      //初始状态r_rden_lock <= 'd0;else if(w_user_tx_ready && !r_user_tx_ready)        //结束状态,当前为高电平1,前一拍为低电平,即上升沿判断为结束状态r_rden_lock <= 'd0;else if(~w_fifo_empty && w_user_tx_ready)           //变化状态,即fifo内有数据+ready好了r_rden_lock <= 'd1;elser_rden_lock <= r_rden_lock;end//处理fifo读使能情况,r_fifo_rden
always @(posedge w_user_clk or posedge w_user_rst) 
beginif(w_user_rst)r_fifo_rden <= 'd0;else if(~w_fifo_empty && w_user_tx_ready)r_fifo_rden <= 'd1;elser_fifo_rden <= 'd0;
end//因为发送的数据是比FIFO中的读使能r_fifo_rden满一个周期
//为实现有效信号和数据能够匹配上,所以对有效信号进行打一拍来延迟一个周期,从而实现信号和数据匹配,正确获取数据
always @(posedge w_user_clk or posedge w_user_rst) 
beginif(w_user_rst)r_uart_tx_vaild <= 'd0;elser_uart_tx_vaild <= r_fifo_rden;
endendmodule

总结

串口顶层模块UART_TOP、例化PLL、UART_FIFO、uart_drive,功能实现,数据缓存先进先出fifo实现,fifo使能控制等功能实现。

相关文章:

FPGA-结合协议时序实现UART收发器(五):串口顶层模块UART_TOP、例化PLL、UART_FIFO、uart_drive

FPGA-结合协议时序实现UART收发器&#xff08;五&#xff09;&#xff1a;串口顶层模块UART_TOP、例化PLL、UART_FIFO、uart_drive 串口顶层模块UART_TOP、例化PLL、UART_FIFO、uart_drive&#xff0c;功能实现。 文章目录 FPGA-结合协议时序实现UART收发器&#xff08;五&…...

我学编程全靠B站了,真香-国外篇(第三期)

你好&#xff0c;我是Martin。 今天来点猛料&#xff0c;给大家推荐点我的压箱收藏-国外知名大学的公开课。 我推荐的不多&#xff0c;本着少就是多的原则&#xff0c;只给大家推荐我看过最好的五门视频&#xff0c;主要是来自两所国外高校&#xff1a;MIT美国麻省理工、CMU卡…...

c++ 变量常量指针练习题

Q1:在win32 x86模式下&#xff0c;int *p; int **pp; double *q; 请说明p、pp、q各占几个字节的内存单元。 p 占 4 个字节 pp 占 4 个字节 q 占 4 个字节 Q2常量1、1.0、“1”的数据类型是什么&#xff1f; 1 是 整形 int 1.0 是 浮点型 double “1” 是 const char * Q3 语句&…...

Linux底层基础知识

一.汇编&#xff0c;C语言&#xff0c;C&#xff0c;JAVA之间的关系 汇编&#xff0c;C语言&#xff0c;C可以通过不同的编译器&#xff0c;编译成机器码。而java只能由Java虚拟机识别。Java虚拟机可以看成一个操作系统&#xff0c;Java虚拟机是由汇编&#xff0c;C&#xff0c…...

JUC并发编程--------线程安全篇

目录 什么是线程安全性问题&#xff1f; 如何实现线程安全&#xff1f; 1、线程封闭 2、无状态的类 3、让类不可变 4、加锁和CAS 并发环境下的线程安全问题有哪些&#xff1f; 1、死锁 2、活锁 3、线程饥饿 什么是线程安全性问题&#xff1f; 我们可以这么理解&#…...

机器视觉之Basler工业相机使用和配置方法(C++)

basler工业相机做双目视觉用&#xff0c;出现很多问题记录一下&#xff1a; 首先是多看手册&#xff1a;https://zh.docs.baslerweb.com/software 手册内有所有的源码和参考示例&#xff0c;实际上在使用过程中&#xff0c;大部分都是这些源码&#xff0c;具体项目选择对应的…...

Centos nginx配置文档

1、安装nginx: yum install nginx 2、Nginx常用命令 查看版本:nginx -v 启动:nginx -c /etc/nginx/nginx.conf 重新加载配置:nginx -s reload 停止:nginx -s stop 3、Nginx反向代理配置 nginx配置详解 1、Nginx配置图 详情可以查看:http://nginx.org/ru/docs/example…...

2023/9/14 -- C++/QT

作业&#xff1a; 仿照Vector实现MyVector&#xff0c;最主要实现二倍扩容 #include <iostream>using namespace std;template <typename T> class MyVector { private:T *data;size_t size;size_t V_capacity; public://无参构造MyVector():data(nullptr),size(…...

golang在goland编译时获取环境变量失效

在golang中&#xff0c; 我们通常使用os包来获取环境变量&#xff0c;如&#xff1a; os.Getenv() os.LookupEnv() 等。 但如果我们使用goland编译器&#xff0c;在编译是&#xff0c;这时操作环境变量&#xff0c;会发现os包读取到的环境变量值不变&#xff1a; 新增后&am…...

一款非常容易上手的报表工具,简单操作实现BI炫酷界面数据展示,驱动支持众多不同类型的数据库,可视化神器,免开源了

一款非常容易上手的报表工具&#xff0c;简单操作实现BI炫酷界面数据展示&#xff0c;驱动支持众多不同类型的数据库&#xff0c;可视化神器&#xff0c;免开源了。 在互联网数据大爆炸的这几年&#xff0c;各类数据处理、数据可视化的需求使得 GitHub 上诞生了一大批高质量的…...

蓝桥杯 题库 简单 每日十题 day3

01 约数个数 题目描述 本题为填空题&#xff0c;只需要算出结果后&#xff0c;在代码中使用输出语句将所填结果输出即可。 1200000 有多少个约数&#xff08;只计算正约数&#xff09;。 解题思路 枚举&#xff0c;从1开始一直到1200000本身都作为1200000的除数&#xff0c;…...

基于SSM+Vue的高校实验室管理系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用Vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…...

C语言天花板——指针(初阶)

&#x1f320;&#x1f320;&#x1f320; 大家在刚刚接触C语言的时候就肯定听说过&#xff0c;指针的重要性以及难度等级&#xff0c;以至于经常“谈虎色变”&#xff0c;但是今天我来带大家走进指针的奇妙世界。&#x1f387;&#x1f387;&#x1f387; 一、什么是指针&…...

关于第一届全球电子纸创新应用金奖征集评选及报名指南

重要通知 &#xff5c;关于第一届全球电子纸创新应用金奖征集评选及报名指南https://mp.weixin.qq.com/s/RWsZtmJ20-NZXMG0k0rwPA?wxwork_useridEPIA 从2004年&#xff0c;Sony推出全球首款电纸书阅读器至今20载&#xff0c;这期间&#xff0c;到底诞生了多少种创新产品&#…...

idea搭建项目找不到Tomcat

idea搭建项目找不到Tomcat_idea没有tomcat配置项_ZYRL的博客-CSDN博客...

类和对象三大特性之继承

全文目录 继承的概念定义格式继承关系和访问限定符final 基类和派生类对象赋值转换继承中的作用域派生类的六个默认成员函数构造函数拷贝构造函数operator析构函数 友元和静态成员友元静态成员 各种继承形式菱形继承虚继承菱形虚拟继承对象模型 继承和组合 继承的概念 通过继承…...

Debian 12安装Docker

1.更新系统包 #apt update 2.安装依赖包 #apt install apt-transport-https ca-certificates curl gnupg lsb-release 3.添加Docker源 &#xff08;1&#xff09;添加Docker 官方GPG密钥 #curl -fsSL https://download.docker.com/linux/debian/gpg | gpg --dearmor -o /usr/s…...

小谈设计模式(4)—单一职责原则

小谈设计模式&#xff08;4&#xff09;—单一职责原则 专栏介绍专栏地址专栏介绍 单一职责原则核心思想职责的划分单一变化原则高内聚性低耦合性核心总结 举例图书类&#xff08;Book&#xff09;用户类&#xff08;User&#xff09;图书管理类&#xff08;Library&#xff09…...

ATF(TF-A) EL3 SPMC威胁模型-安全检测与评估

安全之安全(security)博客目录导读 ATF(TF-A) 威胁模型汇总 目录 一、简介 二、评估目标 1、数据流图 三、威胁分析 1、信任边界 2、资产 3、威胁代理 4、威胁类型 5、威胁评估 5.1 端点在直接请求/响应调用中模拟发送方FF-A ID 5.2 端点在直接请求/响应调用中模拟…...

AI绘画Stable Diffusion原理之扩散模型DDPM

前言 传送门&#xff1a; stable diffusion&#xff1a;Git&#xff5c;论文 stable-diffusion-webui&#xff1a;Git Google Colab Notebook部署stable-diffusion-webui&#xff1a;Git kaggle Notebook部署stable-diffusion-webui&#xff1a;Git AI绘画&#xff0c;输入一段…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...