当前位置: 首页 > news >正文

(超详解)堆排序+(图解)

目录:

        1:如何建堆(两种方法)

        2:两种方法建堆的时间复杂度分析与计算

        3:不同类型的排序方式我们应该如何建堆


文章正式开始:

        1:如何建堆

           在实现堆排序之前我们必须得建堆,才能够实现堆排序

                首先在讲解如何建堆之前让我们先来回顾一下堆的概念,堆是一种完全二叉树,它有两种形式,一种是大根堆,另外一种是小根堆。

                大根堆:所有的父亲结点大于或等于孩子结点。

                小根堆:所有的父亲结点小于或等于孩子结点。 

        本文在介绍堆排序的时候我们都默认排升序。

        方法1:我们采用向上调整算法建堆        

                 我们知道向上调整算法的前提是前面的数必须是堆,所以我们就形成了一种思路:

        第一个数我们可以看成是一个堆,那么从第二个数开始我们就依次采用向上调整算法,这样最后我们的数字就会形成一个堆。

        图解:

                

                向上调整建堆的代码如下,如果不理解可以自己尝试画图:

        

                

//假设排升序,建大堆
void HeapSort(int* a, int n){//先建堆,用向上调整算法for (int i = 1; i < n; i++){AdjustUp(a, i);}}

         方法2:采用向下调整的思路建堆

                向下调整的前提:要调整的对象左右子树都得是堆

               那么我们如何通过一个数组来原地建堆呢?

                其实我们可以这样想,叶子结点既可以看作是大堆,也可以看作是小堆,所以我们可以从后面往前面来建堆。

                思路:找到倒数第一个非叶子结点,这样我们可以保证左右子树都是堆,才能够对整个堆使用向下调整算法的思想。

             那么最后一个非叶子结点如何才能找到呢?这里不就是我们要记住的一个特点吗,通过孩子结点来算父亲结点。

                parent=(child-1)/2;

                我们先找到最后一个结点的下标,然后通过结点算父亲的公式不就可以算出来了吗

                所以倒数第一个非叶子结点的下标不就是 (n-1-1)/2吗 ?

                图解过程:

                

 

         2:两种方法建堆复杂度的分析

                首先我们直接公布结论: 

                向上调整算法的时间复杂度为O(N*logN),向下调整算法的时间复杂度为O(N),所以建堆在复杂度的层面来说向下调整算法是优于向上调整算法的。

        向上调整算法的时间复杂度分析:

        我们知道向上调整算法是依次将后一个元素向上进行调整,那么最坏的情况下就是我们所插入一个数就要调整到根节点处。

        

        同理向下调整的复杂度分析

                   

         为啥同样都是建堆的过程,可是为啥向下调整算法的时间复杂度优于向上调整算法呢

        因为向下调整算法时,最后一层结点不需要向下调整,且最后一层的结点比较多,从下往上,结点个数变少,乘以的层数变多,但是主要取决于时间复杂度的是结点个数多的。

        而向上调整算法,最后一层结点的个数多,且需要调整的层数也最高,导致向上调整的时间复杂度高。

3.堆排序

        在讲了前面两种算法的基础上我们就可以来谈一谈我们的堆排序了,堆排序并不是我们所讲的数据结构,虽然说堆数据结构也可以看出堆的升序与降序,但是我们可能并不是只要打印这个数组出来,我们可能还会进行一些算法,比如2分查找....。

        堆排序的思路:

                1:首先对数组进行建堆。

                2:将最后一个元素与第一个元素交换,在向下进行调整

                3:循环往复的进行,最后排除来的就是我们所需要的结果了。

            那我们在排升序的时候应该见建大堆,还是小堆呢?

        相信许多人在看到要排升序的时候,可能第一反应的是建小堆,因为小堆中的第一个数是所有元素中最小的那个数,但是当我们建立小堆的时候,那我们的第二个小的数字如何取呢?

        且当我们将第一个元素排好之后,后面的元素的关系都不对了,就会形成兄弟变父子,父子叔侄变兄弟,那么我们可能还需要建一次堆,那么总体的时间复杂度为N*(N*logN),

        所以我们排升序需要建大堆,排降序需要建小堆。 

        而我们为什么可以这样子做呢?

        我们假设有一个数组我们已近将他建成大堆了,那么我们很明显知道根节点最大,那么我们就可以这样子做。

        将最大的根结点与最后一个数字进行交换,由于我们只是交换了根结点与最后一个元素,其他的结构没有动,所以就可以使用向下调整,然后在对前n-1个元素进行向下调整,整个的时间复杂度为logn。每次选一个大的,我们向将大的排在最后,循环进行就可以排成我们所需要的结果了。

        代码实现

void HeapSort(int* a, int n)
{//向下调整算法建堆,建大堆,排升序for (int i = (n-1-1)/2; i >=0; i--){AdjustDown(a, n, i);}int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

                

        也可以使用向上调整建堆进行堆排序:

        

假设排升序,建大堆
//void HeapSort(int* a, int n)
//{
//	//先建堆,用向上调整算法
//	for (int i = 1; i < n; i++)
//	{
//		AdjustUp(a, i);
//	}
//
//	//将最后一个数与根节点交换
//	//在进行向下调整,循环执行
//	int end = n - 1;
//	/*while (end > 0)
//	{
//		Swap(&a[end], &a[0]);
//		AdjustDown(a, end, 0);
//		--end;
//	}*/
//	
//	
//		
//
//}

        本章完!!!

        感谢观看。

相关文章:

(超详解)堆排序+(图解)

目录&#xff1a; 1:如何建堆(两种方法) 2:两种方法建堆的时间复杂度分析与计算 3:不同类型的排序方式我们应该如何建堆 文章正式开始&#xff1a; 1&#xff1a;如何建堆 在实现堆排序之前我们必须得建堆&#xff0c;才能够实现堆排序 首先在讲解如何建堆之前让我们先来回顾一…...

Hadoop的YARN高可用

一、YARN简介 Hadoop2.0即第二代Hadoop&#xff0c;由分布式存储系统HDFS、并行计算框架MapReduce和分布式资源管理系统YARN三个系统组成&#xff0c;其中YARN是一个资源管理系统&#xff0c;负责集群资源管理和调度&#xff0c;MapReduce则是运行在YARN上的离线处理框架。 Y…...

C++内存检查

内存泄漏是程序中常见&#xff0c;也是最令人痛苦的一种bug。好在有一些检查工具可以帮助我们&#xff0c;这里介绍一个google 提供的简单直接的工具 Address-Sanitizer (ASAN)。 预备条件 ASAN 原来是LLVM 中的特性&#xff0c;后来GCC 4.8中也开始支持。也就是说&#xff0…...

防火墙概述及实战

目录 前言 一、概述 &#xff08;一&#xff09;、防火墙分类 &#xff08;二&#xff09;、防火墙性能 &#xff08;三&#xff09;、iptables &#xff08;四&#xff09;、iptables中表的概念 二、iptables规则匹配条件分类 &#xff08;一&#xff09;、基本匹配条…...

nginx代理故障总结

一、故障现象 今天公司的某个系统文件下载功能失败&#xff0c;报错network error&#xff0c;其他功能正常。 二、故障定位 首先我们检查了公司的网络情况&#xff0c;包括网络路由、防火墙策略、终端安全产品等&#xff0c;均未发现异常。 尝试访问http://X.X.X.X:7002端口&…...

python爬虫爬取电影数据并做可视化

思路&#xff1a; 1、发送请求&#xff0c;解析html里面的数据 2、保存到csv文件 3、数据处理 4、数据可视化 需要用到的库&#xff1a; import requests,csv #请求库和保存库 import pandas as pd #读取csv文件以及操作数据 from lxml import etree #解析html库 from …...

哈希及哈希表的实现

目录 一、哈希的引入 二、概念 三、哈希冲突 四、哈希函数 常见的哈希函数 1、直接定址法 2、除留余数法 五、哈希冲突的解决 1、闭散列 2、开散列 一、哈希的引入 顺序结构以及平衡树中&#xff0c;元素关键码与其存储位置之间没有对应的关系&#xff0c;因此在查找…...

CLIP 基础模型:从自然语言监督中学习可转移的视觉模型

一、说明 在本文中&#xff0c;我们将介绍CLIP背后的论文&#xff08;Contrastive Language-I mage Pre-Training&#xff09;。我们将提取关键概念并分解它们以使其易于理解。此外&#xff0c;还对图像和数据图表进行了注释以澄清疑问。 图片来源&#xff1a; 论文&#xff1a…...

解读性能指标TP50、TP90、TP99、TP999

TP指标说明 TP指标: 指在一个时间段内&#xff0c;统计该方法每次调用所消耗的时间&#xff0c;并将这些时间按从小到大的顺序进行排序, 并取出结果为&#xff1a;总次数*指标数对应TP指标的值&#xff0c;再取出排序好的时间。 TPTop Percentile&#xff0c;Top百分数&#…...

【无标题】mysql 截取两个,之间字符串

截取两个&#xff0c;之间字符串 select area,SUBSTRING_INDEX(et.area,,,1) as XZQH1,if(length(et.area)-length(replace(et.area,,,))>1,SUBSTRING_INDEX(SUBSTRING_INDEX(et.area,,,2),,,-1),NULL) AS XZQH2,if(length(et.area)-length(replace(et.area,,,))>2,SUBS…...

全局的键盘监听事件

一、设定全局键盘监听事件 放在vue 的created()或者mounted ()中&#xff0c;可对整个文档进行键盘事件监听。 new Vue({ created() { window.addEventListener(keydown, this.handleKeydown); }, beforeDestroy() { window.removeEventListener(keydown, this.handleK…...

Qt自定义QSlider(支持水平垂直)

实现背景&#xff1a; Qt本身有自己的QSlider&#xff0c;为什么我们还要自定义实现呢&#xff0c;因为Qt自带的QSlider存在一个问题&#xff0c;当首尾为圆角时&#xff0c;滑动滚动条到首尾时会出现圆角变成矩形的问题。当然如果QSS之间的margin和滑动条的圆角控制的好的话是…...

会话控制学习

文章目录 介绍cookieexpress中使用cookie获取cookie session配置区别 介绍 cookie express中使用cookie 退出登录就是删除cookie 获取cookie 添加中间键后&#xff0c;直接获取 session 配置 区别...

dweb-browser阅读

dweb-browser阅读 核心模块js.browser.dwebjmm.browser.dwebmwebview.browser.dwebnativeui.browser.dweb.sys.dweb plaoc插件 核心模块 js.browser.dweb 它是一个 javascript-runtime&#xff0c;使用的是 WebWorker 作为底层实现。它可以让您在 dweb-browser 中运行 javasc…...

ChatGPT:使用fastjson读取JSON数据问题——如何使用com.alibaba.fastjson库读取JSON数据的特定字段

ChatGPT&#xff1a;使用fastjson读取JSON数据问题——如何使用com.alibaba.fastjson库读取JSON数据的特定字段 有一段Json字符串&#xff1a; {"code": 200,"message": "success","data": {"total": "1","l…...

2、ARM处理器概论

一、ARM处理器概述 1、ARM的含义 ARM&#xff08;Advanced RISC Machines&#xff09;有三种含义&#xff0c;一个公司的名称、一类处理器的通称、一种技术 ARM公司&#xff1a; 成立于1990年11月&#xff0c;前身为Acorn计算机公司主要设计ARM系列RISC处理器内核授权ARM内…...

【Python】福利彩票复式模拟选号程序

【效果】 【注意】 逻辑是用Random模拟10000次复试彩票选号,然后给出最大可能性一组。但是模拟终究是模拟,和现实彩票结果没有任何联系,下载下来玩就是了,没人能保证模拟出中奖号码,不要投机,不要投机! 【修改】 代码很简单,如果想改成不是复式的,自行修改即可。 如…...

Pytorch 机器学习专业基础知识+神经网络搭建相关知识

文章目录 一、三种学习方式二、机器学习的一些专业术语三、模型相关知识四、常用的保留策略五、数据处理六、解决过拟合与欠拟合七、成功的衡量标准 一、三种学习方式 有监督学习&#xff1a; 1、分类问题 2、回归问题 3、图像分割 4、语音识别 5、语言翻译 无监督学习 1、聚类…...

torch 和paddle 的GPU版本可以放在同一个conda环境下吗

新建conda 虚拟环境&#xff0c;python 版本3.8.17 虚拟机&#xff0c;系统centos 7,内核版本Linux fastknow 3.10.0-1160.92.1.el7.x86_64 &#xff0c;显卡T4&#xff0c;nvidia-smi ,460.32.03&#xff0c;对应cuda 11.2&#xff0c;安装cuda 11.2和cudnn&#xff0c;conda…...

MYBATIS-PLUS入门使用、踩坑记录

转载&#xff1a; mybatis-plus入门使用、踩坑记录 - 灰信网&#xff08;软件开发博客聚合&#xff09; 首先引入MYBATIS-PLUS依赖&#xff1a; SPRING BOOT项目&#xff1a; <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus…...

C# 静态类和sealed类(密封类)的区别

网上看到很多文章写静态类&#xff0c;和密封类&#xff0c;但是鲜有它们的对比总结&#xff0c;在此简单总结一下&#xff1a; 静态类&#xff08;Static Class&#xff09;&#xff1a; 静态类不能被实例化&#xff0c;其成员都是静态的&#xff0c;可以通过类名直接访问。静…...

el-table如何实现自动缩放,提示隐藏内容

前提问题&#xff1a;大屏展示中某一个区域是表格内容&#xff0c;当放大或缩小网页大小时&#xff0c;表格宽度随之缩放&#xff0c;但表格内容未进行缩放&#xff0c;需要表格内容与网页大小同时进行缩放&#xff0c;且表头和表格内容宽度不够未显示全时&#xff0c;需要进行…...

CRM客户管理软件对出海企业的帮助与好处

2023我们走出了疫情的阴霾&#xff0c;经济下行压力大&#xff0c;面对内需的不足&#xff0c;国内企业纷纷选择出海&#xff0c;拓展海外业务增加企业营收。企业出海不是一件易事&#xff0c;有了CRM系统可以让公司事半功倍&#xff0c;下面就来说一说CRM客户管理软件能为出海…...

【QT--使用百度地图API显示地图并绘制路线】

QT--使用百度地图API显示地图并绘制路线 前言准备工作申请百度地图密钥(AK)安装开发环境 开发过程新建项目ui界面GPSManager类主窗口Map 效果展示 前言 先吐槽一下下&#xff0c;本身qt学的就不咋滴&#xff0c;谁想到第一件事就是让写一个上位机工具&#xff0c;根据CAN总线传…...

C数据结构二.练习题

一.求级数和 2.求最大子序列问题:设给定一个整数序列 ai.az..,a,(可能有负数).设计一个穷举算法,求a 的最大值。例如,对于序列 A {1,-1,1,-1,-1,1,1,1,1.1,-1,-1.1,-1,1,-1},子序列 A[5..9](1,1,1,1,1)具有最大值5 3.设有两个正整数 m 和n,编写一个算法 gcd(m,n),求它们的最大公…...

猫头虎博主第5️⃣期赠书活动:《Java官方编程手册(第12版·Java 17)套装上下册》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

(1)数据库 MSQ 数据库 安装 使用 以及增删改查

下载官网&#xff1a;MySQL :: Download MySQL Shell 常见的数据库分为&#xff1a; 关系型数据库&#xff0c; Oracle、MySQL、SQLServer、Access非关系型数据库&#xff0c; MongoDB、Redis、Solr、ElasticSearch、Hive、HBase 安装过程 使用过程...

什么测试自动化测试?

什么测试自动化测试&#xff1f; 做测试好几年了&#xff0c;真正学习和实践自动化测试一年&#xff0c;自我感觉这一个年中收获许多。一直想动笔写一篇文章分享自动化测试实践中的一些经验。终于决定花点时间来做这件事儿。 首先理清自动化测试的概念&#xff0c;广义上来讲&a…...

【踩坑篇】代码中使用 Long 作为 Map的Key存在的问题

本周的工作结束&#xff0c;详述一些在项目代码中实际遇到的一些坑。 代码中遇到这样一个场景&#xff1a; 有个业务接口&#xff0c;接口返回的值是一个JSON格式的字符串&#xff0c;通过JSON解析的方式&#xff0c;解析为格式为&#xff1a; Map<Long, Map<String, O…...

微服务保护-授权规则/规则持久化

授权规则 基本规则 授权规则可以对调用方的来源做控制&#xff0c;有白名单和黑名单两种方式。 白名单&#xff1a;来源&#xff08;origin&#xff09;在白名单内的调用者允许访问 黑名单&#xff1a;来源&#xff08;origin&#xff09;在黑名单内的调用者不允许访问 点…...

网站建设氺金手指排名15/郑州seo排名哪有

为什么80%的码农都做不了架构师&#xff1f;>>> 关于nginx upstream的几种配置方式 第一种&#xff1a;轮询 upstream test{ server 192.168.0.1:3000; server 192.168.0.1:3001;} 第二种&#xff1a;权重 upstream test{ server 192.168.0.1 weight2; …...

新乡做网站推广/seo3的空间构型

ACCESS 查询和窗体实验报告实验报告课程名称数据库技术与应用实验项目名称ACCESS查询和窗体实验班级与班级代码11国金金融2班1125050521实验室名称(或课室)SS1-204专业国际金融任课教师司徒抗卫学号&#xff1a;11250505219姓名&#xff1a;李铭鑫实验日期&#xff1a;201*年05…...

两峡一峰旅游开发公司官方网站/网络营销是什么工作主要干啥

目录 1、队列的定义 2、队列常见的基本操作 1、队列的定义 队列&#xff08;Queue&#xff09;简称队&#xff0c;也是一种操作受限的线性表&#xff0c;只允许在表的一端进行插入&#xff0c;而在表的另一端进行删除。向队列中插入元素称为入队或进队&#xff1b;删除元素称…...

上海建智咨询培训网站/seo博客优化

简介 本节课需要实现的内容是使用纹理贴图来模拟文字效果。使用这种技术显示文字的好处在于程序的效果在任何机器上都是相同的。而我们前面讨论的显示文字的方法都是依赖于当前系统中所包含的字体&#xff0c;所以前面讨论的技术在不同的机器上有可能会有不同的显示效果。 使用…...

沈阳网站建设公众号/网站建设的数字化和互联网化

源码 资源在qq群:2076966127 这个是我更新这个系列的第二期&#xff0c;现在看看几个月之前画的UI我真想吐了。好丑啊~~~~~ 现在我再一些大型的 图标网站找到了很多好看简介免费的图标~~ https://www.flaticon.com 这个就很不错~ 还是先准备好你的QtDesigner这个原本是为了C准备…...

网站建设类电话销售/seo网络排名优化技巧

其实还是这个老问题&#xff1a; 记一次文件下载丢包填坑之旅 http://www.cnblogs.com/syjkfind/p/5281677.html 即使现在只有haproxy-nginx-磁盘文件 比较少的转发&#xff0c;但文件特别大&#xff0c;还是偶有文件不完整的问题。 从现象上看&#xff0c;浏览器响应是200没问…...