PyG-GAT-Cora(在Cora数据集上应用GAT做节点分类)
文章目录
- model.py
- main.py
- 参数设置
- 运行图
model.py
import torch.nn as nn
from torch_geometric.nn import GATConv
import torch.nn.functional as F
class gat_cls(nn.Module):def __init__(self,in_dim,hid_dim,out_dim,dropout_size=0.5):super(gat_cls,self).__init__()self.conv1 = GATConv(in_dim,hid_dim)self.conv2 = GATConv(hid_dim,hid_dim)self.fc = nn.Linear(hid_dim,out_dim)self.relu = nn.ReLU()self.dropout_size = dropout_sizedef forward(self,x,edge_index):x = self.conv1(x,edge_index)x = F.dropout(x,p=self.dropout_size,training=self.training)x = self.relu(x)x = self.conv2(x,edge_index)x = self.relu(x)x = self.fc(x)return x
main.py
import torch
import torch.nn as nn
from torch_geometric.datasets import Planetoid
from model import gat_cls
import torch.optim as optim
dataset = Planetoid(root='./data/Cora', name='Cora')
print(dataset[0])
cora_data = dataset[0]epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7net = gat_cls(cora_data.x.shape[1],hidden_dim,output_dim)
optimizer = optim.AdamW(net.parameters(),lr=lr,weight_decay=weight_decay)
#optimizer = optim.SGD(net.parameters(),lr = lr,momentum=momentum)
criterion = nn.CrossEntropyLoss()
print("****************Begin Training****************")
net.train()
for epoch in range(epochs):out = net(cora_data.x,cora_data.edge_index)optimizer.zero_grad()loss_train = criterion(out[cora_data.train_mask],cora_data.y[cora_data.train_mask])loss_val = criterion(out[cora_data.val_mask],cora_data.y[cora_data.val_mask])loss_train.backward()print('epoch',epoch+1,'loss-train {:.2f}'.format(loss_train),'loss-val {:.2f}'.format(loss_val))optimizer.step()net.eval()
out = net(cora_data.x,cora_data.edge_index)
loss_test = criterion(out[cora_data.test_mask],cora_data.y[cora_data.test_mask])
_,pred = torch.max(out,dim=1)
pred_label = pred[cora_data.test_mask]
true_label = cora_data.y[cora_data.test_mask]
acc = sum(pred_label==true_label)/len(pred_label)
print("****************Begin Testing****************")
print('loss-test {:.2f}'.format(loss_test),'acc {:.2f}'.format(acc))
参数设置
epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7
运行图

相关文章:
PyG-GAT-Cora(在Cora数据集上应用GAT做节点分类)
文章目录 model.pymain.py参数设置运行图 model.py import torch.nn as nn from torch_geometric.nn import GATConv import torch.nn.functional as F class gat_cls(nn.Module):def __init__(self,in_dim,hid_dim,out_dim,dropout_size0.5):super(gat_cls,self).__init__()s…...
java专项练习(验证码)
package 专题练习;import java.util.Random;public class Developing_CAPTCHA {public static void main(String[] args) {/* 需求:定义方法生成一个5位的验证码 验证码长度为5,前四位为大或小写字母,最后一位是数字*///方法: 如果我们要在一堆没有规律的数据中随机抽取,可以先…...
MS1861 视频处理与显示控制器 HDMI转MIPI LVDS转MIPI带旋转功能 图像带缩放,旋转,锐化
1. 基本介绍 MS1861 单颗芯片集成了 HDMI 、 LVDS 和数字视频信号输入;输出端可以驱动 MIPI(DSI-2) 、 LVDS 、 Mini-LVDS 以及 TTL 类型 TFT-LCD 液晶显示。可支持对输入视频信号进行滤波,图 像增强,锐化,对比度调节&am…...
广州华锐互动:利用VR复原文化遗址,沉浸式体验历史文物古迹的魅力
在过去的几十年里,科技发展飞速,为我们打开了无数新的视角和可能性。其中,虚拟现实(Virtual Reality,简称VR)技术的崭新应用,为我们提供了一种全新的、近乎身临其境的体验历史的方式。本文将重点…...
微信小程序——事件监听
微信小程序是一种轻量级的应用程序,它在移动设备上提供了丰富的用户体验。在开发微信小程序时,事件监听是一项重要的技术,它允许开发者捕捉和处理用户的各种操作。本文将介绍微信小程序事件监听的概念、用法和一些实用示例。 1. 什么是事件监…...
View绘制流程的源码所得
一些问题 子线程可以更新 UI 吗 答案是可以的,在特定的情况下可以 可以先在主线程中调用requestLayout() 方法,然后紧接着在子线程中更新UI(原理:不要在子线程触发 checkThread() 方法,而checkThread() 方法的调用时…...
企业级数据仓库-理论知识
D3 AM 大数据中间件 Hive:将SQL转化成分布式Map/Reduce进行运算,也支持转换成Spark,需要单独安装Hive集群才能访问Spark,支持60%的SQL,延迟比较大。SparkSQL:属于Spark生态圈,Hive on Sqark。HBase: NoSQL,高并发读,适…...
解决flutter不识别yaml里面配置的git项目
解决办法找到相应的 git路径,然后手动 git pull 暂时先用这个笨方法,后面有更好的解决办法了再说 studio 自己拉取的项目里面没有ios 和lib包...
rust结构体
一、定义结构体类型 语法 struct Name_of_structure {field1: data_type,field2: data_type,field3: data_type, }注意: 不同于C,Rust的struct语句仅用来定义类型,不能定义实例。 结尾不需要;。 每个字段定义之后用 , 分隔。最后一个逗号可…...
Python - 小玩意 - 键盘记录器
pip install keyboardimport keyboard import timedef get_time():date_time time.strftime("%Y-%m-%d %H:%S", time.localtime())return date_timedef abc(x):if x.event_type down:print(f"{get_time()}你按下了{x.name}")with open(./键盘记录器.txt,…...
msvcp71.dll丢失的解决方法分享,全面分析msvcp71.dll丢失原因
msvcp71.dll 丢失的问题可能困扰着许多使用 Windows 操作系统的用户。msvcp71.dll 是微软 C运行时库中的一个动态链接库文件,负责提供一些基本的函数和类,例如字符串处理、数学运算、文件操作等。如果这个文件丢失或损坏了,那么在使用依赖于它…...
stm32----ADC模数转换
一、ADC介绍 ADC,即模数转换器,它可以将模拟信号转化为数字信号。在stm32种一般有3个ADC,每个ADC有18个通道。 12位ADC是一种逐次逼近型模拟数字转换器,它有多达18个通道,可测量16个外部和两个内部信号源。各个通道的A…...
Unity SteamVR 开发教程:用摇杆/触摸板控制人物持续移动(2.x 以上版本)
文章目录 📕教程说明📕场景搭建📕创建移动的动作📕移动脚本⭐移动⭐实时调整 CharacterController 的高度 📕取消手部和 CharacterController 的碰撞 持续移动是 VR 开发中的一个常用功能。一般是用户推动手柄摇杆&…...
04条件构造器和常用接口
条件构造器和常用接口 wapper介绍 条件构造器的两个条件之间默认就是AND并列关系,如果需要或者的关系则需要调用构造器的or()方法 条件构造器类型作用Wrapper条件构造抽象类,最顶端父类AbstractWrapper生成SQL的where条件QueryWrapper封装查询或删除的条件UpdateWrapper封装修…...
什么是HTTP状态码?常见的HTTP状态码有哪些?
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是HTTP状态码?⭐ 1xx - 信息性状态码⭐ 2xx - 成功状态码⭐ 3xx - 重定向状态码⭐ 4xx - 客户端错误状态码⭐ 5xx - 服务器错误状态码⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前…...
vue3的双向绑定原理分析
谈到vue3的双向绑定原理,就得先知道,为什么vue2的双向绑定方式会被废弃? vue2的双向绑定 Object.defineProperty Object.defineProperty() 方法会直接在一个对象上定义一个新属性,或者修改一个对象的现有属性,并返回…...
MySQL数据库时间计算的用法
今天给大家分享如何通过MySQL内置函数实现时间的转换和计算,在工作当中,测试人员经常需要查询数据库表的日期时间,但发现开发人员存入数据库表的形式都是时间戳形式,不利于测试人员查看,测试人员只能利用工具对时间戳进…...
应用在儿童平板防蓝光中的LED防蓝光灯珠
现在电子产品多,手机、平板电脑、电子书等等,由于蓝光有害眼睛健康,于是市场上有很多防蓝光的眼镜、防蓝光的手机膜、防蓝光的平板,这些材料和设备到底有没有用?如何正确预防蓝光危害呢? 我们现在所用的灯…...
BERT 快速理解——思路简单描述
定义: BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,它基于Transformer架构,通过在大规模的未标记文本上进行训练来学习通用的语言表示。 输入 在BERT中,输入…...
二叉树实现的相关函数
1.二叉树的创建 BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi) { if (n0||a[*pi] #){ (*pi);return NULL;}BTNode* root (BTNode*)malloc(sizeof(BTNode));root->_data a[(*pi)];root->_left BinaryTreeCreate(a, --n, pi);root->_right Binary…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...
Linux-进程间的通信
1、IPC: Inter Process Communication(进程间通信): 由于每个进程在操作系统中有独立的地址空间,它们不能像线程那样直接访问彼此的内存,所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...
CTF show 数学不及格
拿到题目先查一下壳,看一下信息 发现是一个ELF文件,64位的 用IDA Pro 64 打开这个文件 然后点击F5进行伪代码转换 可以看到有五个if判断,第一个argc ! 5这个判断并没有起太大作用,主要是下面四个if判断 根据题目…...
MeanFlow:何凯明新作,单步去噪图像生成新SOTA
1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架,旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念,这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换,显…...
