矩阵 m * M = c
文章目录
- 题1
- 题2
题1
(2023江苏领航杯-prng)
题目来源:https://dexterjie.github.io/2023/09/12/%E8%B5%9B%E9%A2%98%E5%A4%8D%E7%8E%B0/2023%E9%A2%86%E8%88%AA%E6%9D%AF/
题目描述:
(没有原数据,自己生成的数据)
from Crypto.Util.number import *
from secret import flag
import random def base(n, l): bb = [] while n > 0: n, r = divmod(n, l) bb.append(r) return ''.join(str(d) for d in bb[::-1]) def prng(secret): seed = base(secret, 5) seed = [int(i) for i in list(seed)] length = len(seed) R = [[ random.randint(0,4) for _ in range(length)] for _ in range(length*2)] S = [] for r in R: s = 0 for index in range(length): s += (r[index] * seed[index]) % 5 s %= 5 S.append(s) return R, S m = bytes_to_long(flag)
R, S = prng(m) with open('output.txt', 'w') as f: f.write(f'R = {R}\nS = {S}')
题目分析:
( R 1 , 1 R 1 , 2 ⋯ R 1 , n R 2 , 1 R 2 , 2 ⋯ R 2 , n ⋮ ⋮ ⋱ ⋮ R 2 n , 1 R 2 n , 2 ⋯ R 2 n , n ) ∗ ( s e e d 1 s e e d 2 ⋮ s e e d n ) = ( S 1 S 2 ⋯ S 2 n ) \begin{pmatrix} R_{1,1}&R_{1,2}&\cdots&R_{1,n}\\ R_{2,1}&R_{2,2}&\cdots&R_{2,n}\\ \vdots&\vdots&\ddots&\vdots\\ R_{2n,1}&R_{2n,2}&\cdots&R_{2n,n} \end{pmatrix}* \begin{pmatrix} seed_1\\ seed_2\\ \vdots\\ seed_n \end{pmatrix} = \begin{pmatrix} S_1&S_2&\cdots&S_{2n} \end{pmatrix} R1,1R2,1⋮R2n,1R1,2R2,2⋮R2n,2⋯⋯⋱⋯R1,nR2,n⋮R2n,n ∗ seed1seed2⋮seedn =(S1S2⋯S2n)
5进制,R * seed = S,已知R,S求seed
from Crypto.Util.number import *
from gmpy2 import *
with open('output1.txt') as f:exec(f.read())
p = 5
R = matrix(GF(5),R).transpose()
S = matrix(GF(5),S)
m = R.solve_left(S).list()
print(long_to_bytes(int(''.join(str(i) for i in m),5)))# CnHongKe{a8cc755d375811f55cec82153388c}
题2
题目来源:https://blog.csdn.net/weixin_52640415/article/details/132925227?spm=1001.2014.3001.5502
题目描述:
(没有原数据,自己生成的数据)
import os
import secret
import hashlib
from Crypto.Util.number import getPrime
from Crypto.Util.Padding import padLEN = 32def xor(a, b):return bytes([a[i%len(a)] ^^ b[i%len(b)] for i in range(max(len(a), len(b)))])def challenge(m: bytes, pbits: int, level: int=0):p = getPrime(pbits)M = random_matrix(GF(p), LEN).matrix_from_rows_and_columns(range(LEN), range(LEN-level))c = vector(GF(p), m) * Mreturn {"p": p, "M": M.list(), "c": c.list()}args = {"chall1": {"m": os.urandom(LEN),"pbits": 512,"level": 0x00},"chall2": {"m": os.urandom(LEN),"pbits": 10,"level": 0x01},"chall3": {"m": os.urandom(LEN),"pbits": 256,"level": 0x10}
}out = dict()
enc = pad(secret.flag, LEN)
for i in range(3):out[f"chall{i+1}"] = challenge(**args[f"chall{i+1}"])enc = xor(enc, hashlib.sha512(args[f"chall{i+1}"]["m"]).digest())
out["enc"] = enc.hex()
with open('output.txt', 'w') as f:f.write(f"{out = }")
题目分析:
m ∗ M = c ,已知 M , c 求 m 共有三组数据,求解三组矩阵 第一组: m 1 ∗ 32 ∗ M 32 ∗ 32 = c 1 ∗ 32 第二组: m 1 ∗ 32 ∗ M 32 ∗ 31 = c 1 ∗ 31 第三组: m 1 ∗ 32 ∗ M 32 ∗ 16 = c 1 ∗ 16 m * M = c,已知M,c求m\\ 共有三组数据,求解三组矩阵\\ 第一组:m_{1*32} * M_{32 * 32} = c_{1 * 32}\\ 第二组:m_{1 * 32} * M_{32 * 31} = c_{1 * 31}\\ 第三组:m_{1 * 32} * M_{32 * 16} = c_{1 * 16}\\ m∗M=c,已知M,c求m共有三组数据,求解三组矩阵第一组:m1∗32∗M32∗32=c1∗32第二组:m1∗32∗M32∗31=c1∗31第三组:m1∗32∗M32∗16=c1∗16
第一组为方阵,用solve_left()直接解
with open('output.txt') as f:exec(f.read())
len = 32p1,M1,c1 = out['chall1']['p'],out['chall1']['M'],out['chall1']['c']
M1 = Matrix(GF(p1),len,len,M1)
c1 = vector(GF(p1),c1)
m1 = M1.solve_left(c1)
print(m1)
bytes([i for i in m1])# b'\xcd\xf4\xd6\xa5#\xa2\x04~q\xf6\x90\xb6@\xf9Z\xbd\x1fw\xfe\\w\xc3\xad\xabQZBQk\xa0L\xc5'
话说非方阵是有无数组解的,solve_left()也可解非方阵,比如题1,所以来到第二组
看大佬博客是这样解的:
p2,M2,c2 = out['chall2']['p'],out['chall2']['M'],out['chall2']['c']
M2 = Matrix(GF(p2),len,len-1,M2)
c2 = Matrix(GF(p2),1,31,c2)
m2 = M2.solve_left(c2).list()
print(m2)basis = M2.left_kernel().basis()[0]
for k in range(p2): try:m21 = m2 + k * basisprint(k, bytes(m21.list())) # 题目中m是byte类型,把超过256的过滤掉except:pass
说明一下
basis 是矩阵 M 的左核空间(left kernel space)中的一个基向量。
左核空间是指满足方程 M * v = 0 的所有向量 v 的集合。
这些向量使得将它们与矩阵 M 进行乘法运算的结果为零向量
不过我很不理解为什么出来的m2是1 * 32的(虽然最后一个元素是0),但不应该是1 * 31吗。题1也不是这样啊,题一求得的seed是1 * n的。这个疑问先留下,我们继续。
这里确实是特殊的,题目中明确了m是byte类型,范围是1~256,不过有限域的范围是p,比256大得多,故通过M2.solve_left(c2)得到的m2并不是最终解,只能说这也是一个解,不过不是我们需要的解。通过爆破将解中的元素锁定在 1 ~ 256的范围内。(通过看他写的题解,我是这样理解的)
第三部分
试了下用solve_left()解,结果可想而知,是有解,不过不是我们要的,解出的数值太太太大了,M3与方阵相差太大,造basis也没用了。
如何将解中数值的范围锁定在1 ~ 256?------ 格基规约(又学到了,记下)
佬的方法:
构造如下块矩阵 ( M 1 p 0 c 0 ) 49 ∗ 48 其中 1 是 32 ∗ 32 的单位矩阵 p = ( p p ⋱ p ) 16 ∗ 16 构造如下块矩阵\\ \begin{pmatrix} M&1\\ p&0\\ c&0 \end{pmatrix}_{49 * 48}\\ \ \\ 其中1是32 * 32的单位矩阵\\ \ \\ p = \begin{pmatrix} p&&&\\ &p&&\\ &&\ddots&\\ &&&p \end{pmatrix}_{16 * 16} 构造如下块矩阵 Mpc100 49∗48 其中1是32∗32的单位矩阵 p= pp⋱p 16∗16
规约后第二行是目标向量,第一行是0向量
p3,M3,c3 = out['chall3']['p'],out['chall3']['M'],out['chall3']['c']
M3 = matrix(ZZ,32,16,M3)
c3 = matrix(ZZ,1,16,c3)
A = block_matrix([[M3,1],[Integer(p3),0],[c3,0]])
m33 = A.LLL()
m3 = bytes(map(abs,m33[1][16:]))
print(m3)
# b'f\xcb\xf1L\xaf\xf2\xf3@a\\4\xb4[op\xa1`\x0c\x0b\x89\xa7\x1e?\x10x\x1e\xf68\xb8\xb9\x9d\xb9'
之后全部异或即可得到flag
from hashlib import *
m1 = sha512(b'\xcd\xf4\xd6\xa5#\xa2\x04~q\xf6\x90\xb6@\xf9Z\xbd\x1fw\xfe\\w\xc3\xad\xabQZBQk\xa0L\xc5').digest()
m2 = sha512(b'\x90\x1b\x87\x9c!\xe4\x92\xef\xd4\xe8\x94\x8f\x1c,\x02N\x80\x97\xb5ep\x90\x06\x8f ]\xba\x9f\xc1N\xb8Z').digest()
m3 = sha512(b'f\xcb\xf1L\xaf\xf2\xf3@a\\4\xb4[op\xa1`\x0c\x0b\x89\xa7\x1e?\x10x\x1e\xf68\xb8\xb9\x9d\xb9').digest()
enc = bytes.fromhex('496415ff125bacee09c8e721f8adf44158e398a854a48415110d0cf88fdc03767b93f91142e035e718d6ad6b7965d15a973cb9fb97923d1a37580cf60f48eabc')
print(len(m1),len(m2),len(m3))
flag = bytes([m1[i] ^ m2[i] ^ m3[i] ^ enc[i] for i in range(len(enc))])
print(flag)
浅记一下:
解疑:为什么是1 * 32 而不是1 * 31,我觉得应该是相差太小,而且,最后一位本来就是0,没有实际意义,它乘出来的结果和 1 * 31乘出来的结果本就相同,故这个1 * 32 的结果很大意义上是等同于1 * 31 的。
还有,不要用题2第三部分的解法去解题1,没用,解不出,如果对题1构造格,格中向量与想要得到的目标向量相差过小(都在GF(5)中),规约不出,得不到结果。
题2真的学到了
记点:块矩阵的构造,left_kernel().basis()的应用
还有一点,题2不要构造下面这种,也得不到结果,矩阵构造不一样结果不一样很正常,反正就是那个对按哪个来。嗯,没了。
( M 1 , 1 ⋯ M 1 , 16 1 M 2 , 1 ⋯ M 2 , 16 1 ⋮ ⋱ ⋮ ⋱ M 32 , 1 ⋯ M 32 , 16 1 p ⋯ p c 1 ⋯ c 16 ) 34 ∗ 48 \begin{pmatrix} M_{1,1}&\cdots&M_{1,16}&1&&&\\ M_{2,1}&\cdots&M_{2,16}&&1&&\\ \vdots&\ddots&\vdots&&&\ddots&\\ M_{32,1}&\cdots&M_{32,16}&&&&1\\ p&\cdots&p\\ c_1&\cdots&c_{16} \end{pmatrix}_{34*48} M1,1M2,1⋮M32,1pc1⋯⋯⋱⋯⋯⋯M1,16M2,16⋮M32,16pc1611⋱1 34∗48
相关文章:
矩阵 m * M = c
文章目录 题1题2 题1 (2023江苏领航杯-prng) 题目来源:https://dexterjie.github.io/2023/09/12/%E8%B5%9B%E9%A2%98%E5%A4%8D%E7%8E%B0/2023%E9%A2%86%E8%88%AA%E6%9D%AF/ 题目描述: (没有原数据,自己生成的数据) from Crypto.Util.number…...
Linux——IO
✅<1>主页::我的代码爱吃辣 📃<2>知识讲解:Linux——文件系统 ☂️<3>开发环境:Centos7 💬<4>前言:是不是只有C/C有文件操作呢?python,java&…...
svn(乌龟svn)和SVN-VS2022插件(visualsvn) 下载
下载地址: https://www.visualsvn.com/visualsvn/download/...
开源日报 0824 | 构建UI组件和页面的前端工作坊
Storybook 是一个用于构建 UI 组件和页面的前端工作坊,支持多种主流框架,提供丰富的插件,具有可配置性强和扩展性好的特点。 storybookjs/storybook Stars: 79.9k License: MIT Storybook 是一个用于构建 UI 组件和页面的前端工作坊&#x…...
福建三明大型工程机械3D扫描工程零件三维建模逆向抄数-CASAIM中科广电
高精度3D扫描技术已经在大型工件制造领域发挥着重要作用,可以高精度高效率实现全尺寸三维测量,本期,我们要分享的应用是大型工程机械3D扫描案例。 铣轮是深基础施工领域内工法先进、技术复杂程度高、高附加值的地连墙设备,具有成…...
使用香橙派学习 Linux的守护进程
Q:什么是守护进程 A:Linux Daemon(守护进程)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行 某种任务或等待处理某些发生的事件。它不需要用户输入就能运行而且提供某种服务,不是对整个系统就是对某个…...
数据治理-数据仓库和商务智能
数据仓库的作用 减少数据冗余,提高信息一致性,让企业能够利用数据做出更优决策的方法,数据仓库是企业数据管理的核心。 业务驱动因素 运营支持职能、合规需求(历史数据响应)和商务智能活动(主因࿱…...
CH2--x86系统架构概览
2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE 图中的实线箭头表示线性地址,虚线表示段选择器,虚线箭头表示物理地址 2.1.1 Global and Local Descriptor Tables 全局描述符表 (GDT) GDT是一个全局的段描述符表,它存储在系统内存中的一个固…...
Immutable.js API 简介
Immutable-js 这个库的实现是深拷贝还是浅拷贝?immutable 来源immutable.js三大特性: 持久化数据结构结构共享惰性操作 Immutable.js 的几种数据类型 immutable 使用 使用 npm 安装 immutable: 常用API介绍 MapListList.isList() 和 Map.isMa…...
HLSL 入门(一)
HLSL High Level Shader Language 高级着色语言,是Direct3D中用来编写Shader的语言。其语法类似于C语言。 虽然其主要作用是用来编写例如顶点着色器,像素着色器。但本质是对图形并行管线进行编程,因此也能用来编写用于计算的着色器ÿ…...
【Docker】挂载数据卷
一、Docker数据卷说明及操作 在Docker中挂载数据卷是一种将数据持久化保存的方法,以便容器之间或容器与主机之间共享数据。以下是如何在Docker中挂载数据卷的步骤: 1、创建数据卷 首先,您需要创建一个数据卷。可以使用以下命令创建一个数据卷…...
[技术干货]spring 和spring boot区别
Spring 和 Spring Boot 都是 Java 框架,用于构建企业级应用程序。Spring 是一个完整的框架,提供各种功能,包括依赖注入、事务管理、数据访问、Web 开发等。Spring Boot 是一个基于 Spring 的框架,旨在简化 Spring 应用程序的开发和…...
【hudi】数据湖客户端运维工具Hudi-Cli实战
数据湖客户端运维工具Hudi-Cli实战 help hudi:student_mysql_cdc_hudi_fl->help AVAILABLE COMMANDSArchived Commits Commandtrigger archival: trigger archivalshow archived commits: Read commits from archived files and show detailsshow archived commit stats: …...
RK3588 添加ROOT权限
一.ROOT简介 ROOT权限是Linux和Unix系统中的超级管理员用户帐户,该帐户拥有整个系统的最高权利,可以执行几乎所有操作。ROOT就是获取安卓系统中的最高用户权限,以便执行一些需要高权限才能执行的操作(包括卸载系统自带程序、刷机、备份、还原…...
【云原生】k8s-----集群调度
目录 1.k8s的list-watch机制 1.1 list-watc机制简介 1.2 根据list-watch机制,pod的创建流程 2.scheduler的调度策略 2.1 scheduler的调度策略简介 2.2 Scheduler预选策略的算法 2.3 Scheduler优选策略的算法 3. k8s中的标签管理及nodeSelector和nodeName的 调…...
一键集成prometheus监控微服务接口平均响应时长
一、效果展示 二、环境准备 prometheus + grafana环境 参考博文:https://blog.csdn.net/luckywuxn/article/details/129475991 三、导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter...
2023/9/13 -- C++/QT
作业: 1> 将之前定义的栈类和队列类都实现成模板类 栈: #include <iostream> #define MAX 40 using namespace std;template <typename T> class Stack{ private:T *data;int top; public:Stack();~Stack();Stack(const Stack &ot…...
mybatis mapper.xml转建表语句
从网上下载了代码,但是发现没有DDL建表语句,只能自己手动创建了,感觉太麻烦,就写了一个工具类 将所有的mapper.xml放入到一个文件夹中,程序会自动读取生成建表语句 依赖的jar <dependency><groupId>org.d…...
封装使用Axios进行前后端交互
Axios是一个强大的HTTP客户端,用于在Vue.js应用中进行前后端数据交互。本文将介绍如何在Vue中使用Axios,并通过一个企业应用场景来演示其实际应用。 Axios简介 公众号:Code程序人生,个人网站:https://creatorblog.cn A…...
SOA、分布式、微服务
SOA: SOA是一种软件设计架构,用于构建分布式系统和应用程序。它将应用程序拆分为一系列松耦合的服务,这些服务通过标准化的接口进行通信,并能够以可编程方式组合和重用。SOA的目标是提高系统的灵活性、可扩展性和可维护性。 特点&…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
