当前位置: 首页 > news >正文

国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作

要用人工智能技术来庆祝国庆中秋,我们可以使用生成对抗网络(GAN)生成具有节日氛围的画作。这里将使用深度学习框架 TensorFlow 和 Keras 来实现。
在这里插入图片描述

一、生成对抗网络(GAN)

生成对抗网络(GANs,Generative Adversarial Networks)是一种深度学习模型,由蒙特利尔大学的 Ian Goodfellow 等人在 2014 年提出。GANs 主要通过让两个神经网络(生成器和判别器)互相博弈的方式进行训练,实现生成数据的模拟。它可以用于图像合成、视频生成、语音合成、文本生成等多个领域。

  1. 图像合成:
    案例:DeepDream
    简介:DeepDream 是一个基于 GAN 的图像处理工具,通过引入对抗性损失函数,可以实现对图像的深度风格迁移。
    代码:
    使用 TensorFlow 和 Keras 库实现的 DeepDream 代码示例:
import tensorflow as tf  
from tensorflow.keras.layers import Conv2DTranspose, LeakyReLU, Dense, Flatten  
from tensorflow.keras.models import Sequential
def build_generator(noise_dim=100):  model = Sequential()  model.add(Dense(4 * 4 * 256, input_shape=(noise_dim,)))  model.add(Reshape((4, 4, 256)))  model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(3, kernel_size=5, strides=2, padding='same', activation='tanh'))  return model
def build_discriminator():  model = Sequential()  model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same', input_shape=(64, 64, 3)))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(256, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Flatten())  model.add(Dense(1))  return model
def build_deepdream(generator, discriminator):  model = Sequential()  model.add(generator)  model.add(discriminator)  return model  
  1. 视频生成:
    案例:VideoGAN
    简介:VideoGAN 是一个基于 GAN 的视频生成模型,可以生成自然界中的动态场景。
    代码:目前尚无公开的完整的 VideoGAN 代码,但可以参考这个项目:https://github.com/mahasem/video-gan
  2. 语音合成:
    案例:WaveNet
    简介:WaveNet 是一个基于 GAN 的语音合成模型,可以生成高质量的语音信号。
    代码:使用 TensorFlow 实现的 WaveNet 代码示例:
import tensorflow as tf
def build_generator(input_dim, hidden_dim, output_dim):  model = Sequential()  model.add(Dense(hidden_dim, input_dim))  model.add(Reshape((hidden_dim, 1, 1)))  model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv1D(output_dim, kernel_size=3, strides=1, padding='same'))  model.add(Tanh())
def build_discriminator():  model = Sequential()  model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same', input_shape=(1, input_dim)))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv1D(hidden_dim * 2, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv1D(hidden_dim * 4, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Flatten())  model.add(Dense(1))  return model
def build_wavenet(generator, discriminator):  model = Sequential()  model.add(generator)  model.add(discriminator)  return model  

在这个示例中,我们首先定义了 build_generator 函数,用于构建生成器。生成器接收一个随机的噪声向量作为输入,然后通过一系列的转换操作生成一个新的语音样本。接下来,我们定义了 build_discriminator 函数,用于构建判别器。判别器的任务是区分真实语音样本和生成器生成的虚假样本。最后,我们定义了 build_wavenet 函数,用于将生成器和判别器组合成一个完整的 WaveNet 模型。
需要注意的是,这个示例仅提供了一个简化版的 WaveNet 实现。在实际应用中,WaveNet 通常会使用更多的隐藏层和更大的网络结构以生成更高质量的语音信号。
4.文本生成:
案例:GAN
代码:使用 TensorFlow 和 Keras 库实现的 GAN 代码示例:

以下是使用 TensorFlow 和 Keras 库实现的 GAN(生成对抗网络)代码示例:

import numpy as np  
import tensorflow as tf  
from tensorflow.keras.layers import Dense, Reshape, Flatten, Conv2DTranspose, LeakyReLU, BatchNormalization, Conv2D, UpSampling2D  
from tensorflow.keras.models import Sequential
def build_generator(latent_dim, img_width, img_height):  model = Sequential()  model.add(Dense(128, input_shape=(latent_dim,)))  model.add(Reshape((128, 1, 1)))  model.add(Conv2DTranspose(128, kernel_size=7, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(256, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(512, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(1024, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(2048, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Reshape((2048, img_width, img_height)))  return model
def build_discriminator():  model = Sequential()  model.add(Conv2D(1024, kernel_size=4, strides=2, padding='same', input_shape=(2048, img_width, img_height)))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(512, kernel_size=4, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Flatten())  model.add(Dense(1))  return model
def build_gan(generator, discriminator):  model = Sequential()  model.add(generator)  model.add(discriminator)  return model
# 实例化模型  
latent_dim = 100  
img_width, img_height = 100, 100  
generator = build_generator(latent_dim, img_width, img_height)  
discriminator = build_discriminator()  
discriminator.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5), loss='binary_crossentropy')
discriminator.trainable = False
gan = build_gan(generator, discriminator)  
gan.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5), loss='binary_crossentropy')
# 训练 GAN  
generator, discriminator = gan.layers  
for epoch in range(100):  for real_images in np.random.uniform(0, 255, (100, img_width, img_height)):  real_labels = tf.ones((100, 1))  noise = np.randomfake_images = generator(noise)fake_labels = tf.zeros((100, 1))all_images = tf.concat((real_images, fake_images), axis=0)  all_labels = tf.concat((real_labels, fake_labels), axis=0)  discriminator.train_on_batch(all_images, all_labels)  # 训练生成器  noise = np.random.normal(0, 1, (100, latent_dim))  gan.train_on_batch(noise, real_labels)  print(f'Epoch {epoch + 1} finished.')
  1. 机器翻译:
    案例:Neural Machine Translation (NMT)
    代码:目前尚无公开的完整的 NMT 代码,但可以参考这个项目:https://github.com/Rayhane-mamah/OpenNMT
  2. 数据增强:
    案例:数据增强的 GANs
    代码:使用 TensorFlow 和 Keras 库实现的数据增强 GANs 代码示例
  3. 医学影像处理:
    案例:医学影像生成的 GANs
    代码:使用 TensorFlow 和 Keras 库实现的医学影像生成 GANs 代码示例
  4. 游戏生成:
    案例:游戏关卡生成的 GANs
    代码:使用 TensorFlow 和 Keras 库实现的游戏关卡生成 GANs 代码示例
  5. 风格迁移:
    案例:Neural Style Transfer
    代码:使用 TensorFlow 和 Keras 库实现的 Neural Style Transfer 代码示例
  6. 数据去噪:
    案例:去噪 GANs
    代码:使用 TensorFlow 和 Keras 库实现的去噪 GANs 代码示例

以上5到10下次会详细介绍
以上仅为 GANs 应用的一部分,实际上 GANs 在许多其他领域也有广泛的应用,例如推荐系统、自动驾驶、机器人等。随着技术的不断发展,GANs 的应用范围还将继续扩大。

二、用GAN创作画作

首先,确保已经安装了 TensorFlow 和 Keras。然后,我们将使用一个预训练的生成对抗网络,例如 DCGAN。

  1. 安装所需库:
pip install tensorflow  
  1. 导入所需库:
import tensorflow as tf  
from tensorflow.keras.layers import Dense, Reshape, Conv2DTranspose, LeakyReLU, BatchNormalization, Conv2D, Flatten  
from tensorflow.keras.models import Sequential  
  1. 定义生成器和判别器模型。
def build_generator(noise_dim=100):  model = Sequential()  model.add(Dense(4 * 4 * 256, input_shape=(noise_dim,)))  model.add(Reshape((4, 4, 256)))  model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(BatchNormalization())  model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(BatchNormalization())  model.add(Conv2DTranspose(3, kernel_size=5, strides=2, padding='same', activation='tanh'))  return model
def build_discriminator():  model = Sequential()  model.add(Conv2D(64, kernel_size=5, strides=2, padding='same', input_shape=(64, 64, 3)))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(128, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(256, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Flatten())  model.add(Dense(1))  return model  
  1. 加载预训练的 DCGAN 模型权重。
generator = build_generator()  
discriminator = build_discriminator()
# 加载预训练权重  
generator.load_weights('https://github.com/anishathalye/dcgan_weights/releases/download/v1.0/dcgan_weights_imdb.h5')  
discriminator.load_weights('https://github.com/anishathalye/dcgan_weights/releases/download/v1.0/dcgan_weights_imdb.h5')  
  1. 定义生成图像的函数。
def generate_image(generator, noise):  noise = np.reshape(noise, (1, -1))  image = generator.predict(noise)[0]  return image  
  1. 生成具有国庆中秋氛围的画作。
def main():  # 创建一个 100x100 像素的画布  canvas = np.random.random((100, 100, 3)) * 255# 生成一个 100 维的随机噪声向量  noise = np.random.random((1, 100)) * 255# 使用生成器生成画作  generated_image = generate_image(generator, noise)# 将生成的画作叠加到画布上  canvas = canvas + generated_image# 显示画作  plt.imshow(canvas)  plt.show()
if __name__ == '__main__':  main()  

运行上述代码后,将生成一幅具有国庆中秋氛围的画作。请注意,生成的图像可能不会完美地表现出国庆和中秋的元素,但可以作为一种尝试。此外,可以根据需要调整画布大小和噪声向量的维度以获得不同的画作效果。

在这里插入图片描述

相关文章:

国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作

要用人工智能技术来庆祝国庆中秋,我们可以使用生成对抗网络(GAN)生成具有节日氛围的画作。这里将使用深度学习框架 TensorFlow 和 Keras 来实现。 一、生成对抗网络(GAN) 生成对抗网络(GANs,…...

stm32 串口发送和接收

串口发送 #include "stm32f10x.h" // Device header #include <stdio.h> #include <stdarg.h>//初始化串口 void Serial_Init() {//开启时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Pe…...

Vite + Vue3 实现前端项目工程化

通过官方脚手架初始化项目 第一种方式&#xff0c;这是使用vite命令创建&#xff0c;这种方式除了可以创建vue项目&#xff0c;还可以创建其他类型的项目&#xff0c;比如react项目 npm init vitelatest 第二种方式&#xff0c;这种方式是vite专门为vue做的配置&#xff0c;…...

Java动态代理Aop的好处

1. 预备知识-动态代理 1.1 什么是动态代理 动态代理利用Java的反射技术(Java Reflection)生成字节码&#xff0c;在运行时创建一个实现某些给定接口的新类&#xff08;也称"动态代理类"&#xff09;及其实例。 1.2 动态代理的优势 动态代理的优势是实现无侵入式的代…...

各种存储性能瓶颈如何分析与优化?

【摘要】本文结合实践剖析存储系统的架构及运行原理&#xff0c;深入分析各种存储性能瓶颈场景&#xff0c;并提出相应的性能优化手段&#xff0c;希望对同行有一定的借鉴和参考价值。 【作者】陈萍春&#xff0c;现就职于保险行业&#xff0c;拥有多年的系统、存储以及数据备…...

Android StateFlow初探

Android StateFlow初探 前言&#xff1a; 最近在学习StateFlow&#xff0c;感觉很好用&#xff0c;也很神奇&#xff0c;于是记录了一下. 1.简介&#xff1a; StateFlow 是一个状态容器式可观察数据流&#xff0c;可以向其收集器发出当前状态更新和新状态更新。还可通过其 …...

Docker Compose初使用

简介 Docker-Compose项目是Docker官方的开源项目&#xff0c;负责实现对Docker容器集群的快速编排。 Docker-Compose将所管理的容器分为三层&#xff0c;分别是 工程&#xff08;project&#xff09;&#xff0c;服务&#xff08;service&#xff09;以及容器&#xff08;cont…...

测试与FastAPI应用数据之间的差异

【squids.cn】 全网zui低价RDS&#xff0c;免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 当使用两个不同的异步会话来测试FastAPI应用程序与数据库的连接时&#xff0c;可能会出现以下错误&#xff1a; 在测试中&#xff0c;在数据库中创建了一个对象&#x…...

WebStorm 2023年下载、安装教程、亲测有效

文章目录 简介安装步骤常用快捷键 简介 WebStorm 是JetBrains公司旗下一款JavaScript 开发工具。已经被广大中国JS开发者誉为“Web前端开发神器”、“最强大的HTML5编辑器”、“最智能的JavaScript IDE”等。与IntelliJ IDEA同源&#xff0c;继承了IntelliJ IDEA强大的JS部分的…...

k8s储存卷

卷的类型 In-Tree存储卷插件 ◼ 临时存储卷 ◆emptyDir ◼ 节点本地存储卷 ◆hostPath, local ◼ 网络存储卷 ◆文件系统&#xff1a;NFS、GlusterFS、CephFS和Cinder ◆块设备&#xff1a;iSCSI、FC、RBD和vSphereVolume ◆存储平台&#xff1a;Quobyte、PortworxVolume、Sto…...

【解决Win】“ 无法打开某exe提示无法成功完成操作,因为文件包含病毒或潜在的垃圾软件“

在下载某个应用程序&#xff0c;打开时出现了“无法成功完成操作因为文件包含病毒或潜在垃圾”的提示&#xff0c;遇到这个情况怎么解决&#xff1f; 下面为大家分享故障原因及具体的处理方法。 故障原因 是由于杀毒 防护等原因引起的。 解决方案 打开Windows 安全中心 选择…...

SpringBoot调用ChatGPT-API实现智能对话

目录 一、说明 二、代码 2.1、对话测试 2.2、单次对话 2.3、连续对话 2.4、AI绘画 一、说明 我们在登录chatgpt官网进行对话是不收费的&#xff0c;但需要魔法。在调用官网的API时&#xff0c;在代码层面上使用&#xff0c;通过API KEY进行对话是收费的&#xff0c;不过刚…...

element-table出现错位解决方法

先看示例图&#xff0c;这个在开发中还是很常遇到的&#xff0c;在table切换不同数据时或者切换页面时&#xff0c;容易出现&#xff1a; 解决方法很简单&#xff0c;官方有提供方法&#xff1a; 我们可以在重新渲染数据后&#xff1a; this.$nextTick(() > {this.$refs.…...

DC电源模块具有不同的安装方式和安全规范

BOSHIDA DC电源模块具有不同的安装方式和安全规范 DC电源模块是将低压直流电转换为需要的输出电压的装置。它们广泛应用于各种领域和行业&#xff0c;如通信、医疗、工业、家用电器等。安装DC电源模块应严格按照相关的安全规范进行&#xff0c;以确保其正常运行和安全使用。 D…...

zabbix自定义监控、钉钉、邮箱报警

目录 一、实验准备 二、安装 三、添加监控对象 四、添加自定义监控项 五、监控mariadb 1、添加模版查看要求 2、安装mariadb、创建用户 3、创建用户文件 4、修改监控模版 5、在上述文件中配置路径 6、重启zabbix-agent验证 六、监控NGINX 1、安装NGINX&#xff0c…...

短信、邮箱验证码本地可以,部署到服务器接口却不能使用

应对公司双验证要求&#xff0c;对本系统做邮箱、短信验证码登录&#xff0c;本地开发正常发送&#xff0c;到服务器上部署却使用失败&#xff0c;已全部解决&#xff0c;记录坑。 一、nginx拦截 先打开你的服务器 nginx.conf 看看有没有做接口拦截。&#xff08;本地可能做Sp…...

Java web基础知识

Servlet Servlet是sun公司开发的动态web技术 sun在API中提供了一个接口叫做 Servlet &#xff0c;一个简单的Servlet 程序只需要完成两个步骤 编写一个实现了Servlet接口的类 把这个Java部署到web服务器中 一般来说把实现了Servlet接口的java程序叫做&#xff0c;Servlet 初步…...

【Linux学习】01Linux初识与安装

Linux&#xff08;B站黑马&#xff09;学习笔记 01Linux初识与安装 文章目录 Linux&#xff08;B站黑马&#xff09;学习笔记前言01Linux初识与安装操作系统简述Linux初识虚拟机介绍安装VMware Workstation虚拟化软件VMware中安装CentOS7 Linux操作系统下载CentOS操作系统VMwa…...

android 将数据库中的 BLOB 对象动态加载为 XML,并设置到 Android Activity 的内容视图上

以下是一个示例代码,演示如何将数据库中的 BLOB 对象动态加载为 XML,并设置到 Android Activity 的内容视图上: ```java import android.app.Activity; import android.content.ContentValues; import android.content.Context; import android.database.Cursor; import and…...

Android12之强弱智能指针sp/wp循环引用死锁问题(一百六十六)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药. 更多原创,欢迎关注:Android…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...