当前位置: 首页 > news >正文

【图像去噪】【TGV 正则器的快速计算方法】通过FFT的总(广义)变化进行图像去噪(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

【图像去噪】【TGV 正则化器的快速计算方法】通过FFT的总(广义)变换进行图像去噪,可提供更自然的恢复图像。为了进一步提升算法的执行效率,我们通过在FFTed(快速傅里叶变换后的)域中求解多变量方程的方式进行优化。

图像去噪是数字图像处理领域中一个重要的任务,通过消除图像中的噪声,可以提高图像的质量和清晰度。TGV(总变差正则化)是一种常用的图像去噪方法,它结合了总变差和梯度正则化,能够有效地去除图像中的噪声,并保持图像细节的准确性。

为了加速TGV正则化器的计算过程,我们利用了FFT(快速傅里叶变换)的性质。FFT是一种高效的算法,可将信号从时域转换到频域,对于处理图像数据非常有效。通过将图像和正则化器在傅里叶域中进行计算,我们可以将复杂的多变量方程转化为一系列更简单的单变量方程,从而大大简化了计算过程。

具体而言,我们首先对输入图像和TGV正则化器进行FFT变换,将它们转换到频域。然后,在频域中,我们将TGV正则化器应用于傅里叶变换后的图像数据,通过解决一系列独立的单变量方程来恢复图像。最后,我们将得到的结果再次通过逆FFT变换转换回时域,得到最终的去噪图像。

这种基于FFT的快速计算方法不仅提高了TGV正则化器的执行速度,还能够更准确地恢复图像的细节和结构。通过在频域中进行运算,我们可以更充分地利用FFT的高效性能,从而在保证图像质量的同时,减少计算时间和资源消耗。

这种快速计算方法在图像去噪领域具有广泛的应用前景,可以在实际的图像处理任务中提供更高效和准确的结果。通过进一步研究和改进,我们可以不断优化这种方法,为图像去噪技术的发展做出更大贡献。

📚2 运行结果

主函数代码:

clear all;
close all;
clc;help imtgvsmooth% ADMM parameters
nite = 20; % number of iterations% balancing weights for Total Variation
alpha = 0.06;  % 1st order
beta = 0.05; % 2nd order%
% load an image
%
fname = 'sanada.jpg';
I = im2double( imread( fname ) );I0 = I; % original as the reference% Additional noise
I = imnoise( I, 'gaussian', 0, 0.1^2 );%
% TGV with R,G,B independent processing
%
J = zeros( size(I) );if ( size(I,3)==3 )I_ycc = rgb2ycocg( I );
endfor c = 1:size(I,3)J(:,:,c) = imtgvsmooth( I_ycc(:,:,c), alpha, beta, nite );
endif ( size(I,3)==3 )J = ycocg2rgb( J );
end%
% PSNR
%
psnr_noisy = 10*log10( 1/mean( ( I0(:) - I(:) ).^2 ) );
psnr_tgv = 10*log10( 1/mean( ( I0(:) - J(:) ).^2 ) );%
% Dsiplaying results
%
figure(1), imshow( [I0, I, J] );
title( sprintf('From the left,  original,  noisy %.2fdB,  TGV %.2fdB', psnr_noisy, psnr_tgv ) );

clear all;
close all;
clc;

help imtgvsmooth

% ADMM parameters
nite = 20; % number of iterations

% balancing weights for Total Variation
alpha = 0.06;  % 1st order
beta = 0.05; % 2nd order


%
% load an image
%
fname = 'sanada.jpg';
I = im2double( imread( fname ) );

I0 = I; % original as the reference

% Additional noise
I = imnoise( I, 'gaussian', 0, 0.1^2 );


%
% TGV with R,G,B independent processing
%
J = zeros( size(I) );

if ( size(I,3)==3 )
    I_ycc = rgb2ycocg( I );
end

for c = 1:size(I,3)
    J(:,:,c) = imtgvsmooth( I_ycc(:,:,c), alpha, beta, nite );
end

if ( size(I,3)==3 )
    J = ycocg2rgb( J );
end

%
% PSNR
%
psnr_noisy = 10*log10( 1/mean( ( I0(:) - I(:) ).^2 ) );
psnr_tgv = 10*log10( 1/mean( ( I0(:) - J(:) ).^2 ) );

%
% Dsiplaying results
%
figure(1), imshow( [I0, I, J] );
title( sprintf('From the left,  original,  noisy %.2fdB,  TGV %.2fdB', psnr_noisy, psnr_tgv ) );

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张文娟,王艳红,ZHANGWen-juan,WANGYan-hong.运用TGV正则化分解模型实现天文图像去噪[J].西安工业大学学报, 2012(9).DOI:10.3969/j.issn.1673-9965.2012.09.003.

[2]陈育群,陈颖频,林凡,等.一种快速交叠组合稀疏全变分图像去噪方法[J].闽南师范大学学报:自然科学版, 2019, 32(3):6.DOI:CNKI:SUN:ZSXZ.0.2019-03-008.

[3]张文静.TGV正则化与小波变换结合的图像去噪算法研究[D].武汉理工大学,2014.DOI:10.7666/d.D639381.

🌈4 Matlab代码实现

相关文章:

【图像去噪】【TGV 正则器的快速计算方法】通过FFT的总(广义)变化进行图像去噪(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

windbg调试句柄问题

这里写自定义目录标题 winform,句柄资源不够强,程序crash句柄主程序c程序,加载的插件是c# dll,这时候如何用windbg调试dll库如果查看句柄和对象的关系!handle 怎么能知道哪个句柄是Form对话框的句柄如何查看句柄对应的类对象 winf…...

9月13-14日上课内容 第三章 ELK日志分析系统及部署实例

本章结构 ELK日志分析系统简介 ELK日志分析系统分为 Elasticsearch Logstash Kibana 日志处理步骤 1.将日志进行集中化管理 2.将日志格式化(Logstash) 并输出到Elasticsearch 3.对格式化后的数据进行索引和存储 (Elasticsearch) 4.前端数据的展示(Kibana) Elasticsearch介…...

服务器端应用的安装

前言:相信看到这篇文章的小伙伴都或多或少有一些编程基础,懂得一些linux的基本命令了吧,本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python:一种编程语言&…...

关于硬盘质量大数据分析的思考

近日,看到Backblaze分享了一遍关于硬盘运行监控数据架构的文章,觉得挺有意义的,本文就针对这方面跟大家聊聊。 作为一家在2021年在美国纳斯达克上市的云端备份公司,Backblaze一直保持着对外定期发布HDD和SSD的故障率稳定性质量报告…...

RK3568核心板分区空间不足,如何修改分区大小?

在对评估板进行开发验证时,时常会遇到根目录空间不足的情况,而在其他分区又有冗余空间,这时则需要对分区大小重新进行分配,合理化利用分区空间。 本文将基于HD-RK3568-IOT评估板主要讲解如何修改eMMC分区大小。 ​ 1. 分区表介绍…...

Linux系统怎么修改主机名

【微|信|公|众|号:厦门微思网络】 1.备份主机名文件 首先redhat修改主机名,在进行任何修改之前,请务必备份主机名文件。这样,即使出现意外情况,你也能够轻松恢复到原始状态。使用以下命令备份主机名文件&#xff1…...

BroadcastChannel方法跨浏览器窗口通信

1. 描述 同源 的不同浏览器窗口,Tab 页,frame 或者 iframe 下的不同文档之间可以通过 BroadcastChannel 相互通信。 2. 构造函数 通过 BroadcastChannel 类传入的参数创建实例,传入的参数将指定通道名称,在同源环境下该通道可以…...

山石网科国产化防火墙,打造全方位边界安全解决方案

互联网的快速发展促进了各行各业的信息化建设,但也随之带来了诸多网络安全风险。大部分组织机构采用统一互联网接入方案,互联网出口承担着内部用户访问互联网的统一出口和对外信息服务的入口,因此在该区域部署相匹配的安全防护手段必不可少。…...

AVL 树

文章目录 一、AVL 树的概念二、AVL 树的实现1. AVL 树的存储结构2. AVL 树的插入 一、AVL 树的概念 在 二叉搜索树 中,当我们连续插入有序的数据时,二叉搜索树可能会呈现单枝树的情况,此时二叉搜索树的查找效率为 O(N) 俄罗斯的两位数学家 …...

ggplot2做图(填坑中)

数据 df <- data.frame(x 1:10, y 1:10, f c(rep("A", 5), rep("B", 5))) 做图 1. 散点图 (scatter plot) # scatter plot scatter_plot <- function(df, metadata) {identical(rownames(df), rownames(metadata))data <- cbind(df, metada…...

Python日志处理器,同时打印到控制台和保存到文件中,并保证格式一致

使用logging模块的时候&#xff0c;默认是输出到控制台的&#xff0c;当然也可以配置输出到文件中&#xff0c;但是当你配置了文件后&#xff0c;控制台的输出就消失了&#xff0c;所以&#xff0c;需要一个策略即能保存到文件中&#xff0c;又能输出到控制台中。 下面是我做的…...

JavaWeb后端开发登录操作 登录功能 通用模板/SpringBoot整合

登录功能的思路 前端会传入两个参数:用户名和密码 在用户表中查询用户名,并校对相应的密码(涉及查询操作) SQL语句 select * from emp where username jingyong and password 123456; 如果有则成功,没有则登录失败.不可能为多个,因为添加了unique唯一约束,最终只会有一条 …...

The 2023 ICPC Asia Regionals Online Contest (1)(A D I J K L)

The 2023 ICPC Asia Regionals Online Contest (1)(A D I J K L) PTA | 程序设计类实验辅助教学平台 A Qualifiers Ranking Rules(模拟) 考虑先对第一场和第二场分别去重(取最好) &#xff0c; 归并排序后再次去重即可。 #include<bits/stdc.h> using namespace std;…...

C++ PrimerPlus 复习 第七章 函数——C++的编程模块(上)

第一章 命令编译链接文件 make文件 第二章 进入c 第三章 处理数据 第四章 复合类型 &#xff08;上&#xff09; 第四章 复合类型 &#xff08;下&#xff09; 第五章 循环和关系表达式 第六章 分支语句和逻辑运算符 第七章 函数——C的编程模块&#xff08;上&#xff…...

2.求循环小数

题目 对于任意的真分数 N/M &#xff08; 0 < N < M &#xff09;&#xff0c;均可以求出对应的小数。如果采用链表表示各个小数&#xff0c;对于循环节采用循环链表表示&#xff0c;则所有分数均可以表示为如下链表形式。 输入&#xff1a; N M 输出&#xff1a; 转换…...

zabbix监控告警邮箱提醒,钉钉提醒

一、注册网易邮箱及其配置邮箱 1、开启POP3/SMTP/IMAP 二、service端配置邮件服务 1.安装 mailx dos2unix yum install -y mailx dos2unix mailx&#xff1a;邮件服务 mos2unix&#xff1a;用于转换文本文件格式的实用工具 查看mailx版本 2.配置mailx配置文件 编辑&#xf…...

典型数据结构-栈/队列/链表、哈希查找、二叉树(BT)、线索二叉树、二叉排序树(BST树)、平衡二叉树(AVL树)、红黑树(RB树)

目录 典型数据结构列举 栈/队列/链表 树 二叉树 线索二叉树 二叉排序树 平衡二叉树&#xff08;AVL树&#xff09; 红黑树 其它树种和应用介绍 典型数据结构列举 栈/队列/链表 描述略。 一些基本的简单实现参考/数据结构简单实现/文件夹里面。 线性表详解&#xff…...

pyarmor 加密许可证的使用

一 pyarmor 许可证的用处 文档&#xff1a;5. 许可模式和许可证 — Pyarmor 8.3.6 文档 试用版本有如下的限制&#xff1a; 加密功能对脚本大小有限制&#xff0c;不能加密超过限制的大脚本。 混淆字符串功能在试用版中无法使用。 RFT 加密模式&#xff0c;BCC 加密模式在试…...

网络路径监控分析

不间断的连接应该是任何企业的首要任务。然而&#xff0c;确保网络中的源和目标之间持续、不间断的联系一直是网络通信中一个劳动密集型的过程。了解网络路径中的障碍、识别它们并迅速解决它们以维护健康、不间断的网络至关重要。 为什么要监控网络路径 维护网络运行状况是任…...

vue双向数据绑定是如何实现的?

Vue中的双向数据绑定主要是通过数据劫持和发布订阅模式来实现的。 数据劫持&#xff1a; Vue通过使用Object.defineProperty()方法来对data对象中的属性进行劫持&#xff0c;从而实现对数据的双向绑定。具体实现方式为&#xff1a; &#xff08;1&#xff09;在Vue实例化时&a…...

el-date-picker 封装一个简单的日期组件, 主要是禁用日期

子组件 <template><div><el-date-pickerv-model"dateModel"type"datetimerange":picker-options"pickerOptions"range-separator"至"ref"picker"start-placeholder"开始日期"end-placeholder&quo…...

保研复习-计算机组成原理

计算机组成原理 计算机组成冯诺依曼体系结构计算机系统的层次结构计算机的五大组成部件编译和解释的区别 CPUCPU的组成寄存器的类型指令类型指令功能指令执行过程 存储器存储器的层次结构寻址方式 输入和输出io方式有哪几种IO接口的基本结构 计算机组成 冯诺依曼体系结构 存储…...

linux环境安装redis(亲测完成)

linux环境安装redis 亲测完成 前言一、redis简介Redis 与其他 key - value 缓存产品有以下三个特点&#xff1a;Redis 优势 二、安装redis1.下载安装包2.创建服务器安装路径3.上传安装包4.解压安装包5.依赖安装6.编译 三、启动1)默认启动错误解决方式 2)指定配置启动2.1&#x…...

关于命令行交互自动化,及pyinstaller打包wexpect的问题

Python自动化工具 用来执行命令并进行交互&#xff0c;比如需要输入账号密码或者确认的场景 linux平台可以用pexpect&#xff0c;但是windows平台有一些差异&#xff0c;比较好用的是pexpect的变种wexpect&#xff0c;如果脚本中用了wexpect&#xff0c;并且要打包成onefile&a…...

8.4 【MySQL】文件系统对数据库的影响

因为 MySQL 的数据都是存在文件系统中的&#xff0c;就不得不受到文件系统的一些制约&#xff0c;这在数据库和表的命名、表的大小和性能方面体现的比较明显&#xff0c;比如下边这些方面&#xff1a; 数据库名称和表名称不得超过文件系统所允许的最大长度。 每个数据库都对应…...

Python WEB框架FastAPI (二)

Python WEB框架FastAPI &#xff08;二&#xff09; 最近一直在使用fastapi&#xff0c;随着使用的深入发现我对于它的了解还是太少了&#xff0c;以至于踩了一些坑。所以在这里记录一下&#xff0c;愿看到的小伙伴不迷路。 路径传参并发问题 一、路径传参 这是对上一个传参…...

基于Java网络书店商城设计实现(源码+lw+部署文档+讲解等)

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…...

怒刷LeetCode的第3天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一&#xff1a;动态规划 第二题 题目来源 题目内容 解决方法 方法一&#xff1a;模拟 方法二&#xff1a;数学规律 方法三&#xff1a;分组 第三题 题目来源 题目内容 解决方法 方法一&#xff1a;数学方法 方法…...

JavaScript数组去重常用方法

数组去重是在 JavaScript 开发中经常遇到的问题。本文将从前言、分析、使用场景、具体实现代码和注意事项等方面&#xff0c;详细讨论 JavaScript 数组去重的方法。 前言&#xff1a; 在 JavaScript 中&#xff0c;数组是一种常用的数据结构&#xff0c;用于存储多个值。然而…...

哪些网站可以做调查赚钱/惠州seo收费

前言 在日常的业务开发中&#xff0c;偶尔会遇到需要将 List 集合中的重复数据去除掉的场景。这个时候可能有同学会问&#xff1a;为什么不直接使用 Set 或者 LinkedHashSet 呢&#xff1f;这样不就没有重复数据的问题了嘛&#xff1f; ​ 不得不说&#xff0c;能提这个问题的…...

电脑网站兼职在哪里做/营业推广的方式有哪些

我的博客地址: sunquan.club 代码Github地址 : https://github.com/developerSunquan/SwiftStudyNotes 可选变量 可选变量是用来处理值可能缺失的.可选变量可以表示为: 有值, 等于值; 无值, 这两种. 可选变量的表示形式是在类型后加" ? "的形式. 如图所示, 如果poss…...

网站怎样做wap端/国内新闻最新消息十条

第1关:通信簿.csv文件进行查询 本关任务:编写函数cztxb,实现根据姓名对通信录.csv文件查询。输入查询的姓名,若文件中存在该人,显示其信息;当查询的姓名不存在时,显示“查无此人”。 #当前位置的sc文件夹下csv格式文件“通信簿”, #该文件每行记录一个姓名、住址、电话…...

马鞍山网站建设设计/东莞seoseo关键词排名优化

一般情况下&#xff0c;我们使用的是nvidia -smi 来监控&#xff0c;但不美观且信息冗余&#xff0c;此处使用gpustat来监控&#xff0c;可直接安装&#xff1a;pip install gpustat 然后我们输入gpustat即可得到&#xff1a; 但此时无法实时获取&#xff0c;使用以下命令即可…...

网站建设丿找vx cp5173/宁波seo网络推广渠道介绍

本文有的内容是期刊风格&#xff0c;所以会随着期刊变化而变化。有的内容不属于风格&#xff0c;比如易错的东西&#xff0c;摘要的功能等&#xff0c;所有期刊都一样。 文章目录一篇想被捞的论文的基本要求标题摘要公式 equations单位 units图 graphics交叉引用 cross referen…...

刘涛做的婴儿玩具网站/线下推广怎么做

为什么80%的码农都做不了架构师&#xff1f;>>> MySQL安装文件分为两种&#xff0c;一种是msi格式的&#xff0c;一种是zip格式的。如果是msi格式的可以直接点击安装&#xff0c;按照它给出的安装提示进行安装&#xff08;相信大家的英文可以看懂英文提示&#xff…...