【算法】二分答案
文章目录
- 相关链接
- 什么时候使用二分答案?
- 题目列表
- 最大化最小化相关题目列表📕
- 2439. 最小化数组中的最大值
- 解法1——二分答案
- 解法2——分类讨论O(n)
- 2513. 最小化两个数组中的最大值(二分答案+lcm+容斥原理)🐂好题!
- 相似题目(容斥原理+二分查找)
- 878. 第 N 个神奇数字
- 1201. 丑数 III
- 2517. 礼盒的最大甜蜜度(二分答案)
相关链接
【力扣周赛】第 362 场周赛(⭐差分&匹配&状态压缩DP&矩阵快速幂优化DP&KMP)里面有一些二分答案的题目。
【力扣周赛】第 363 场周赛(完全平方数和质因数分解) T3是二分答案。
什么时候使用二分答案?
看到「最大化最小值」或者「最小化最大值」就要想到二分答案,这是一个固定的套路。
或者
答案不好直接求,但是可以判断某个数字是否可以满足题目要求且单调时。
具体看下面例题体会一下即可。
题目列表
最大化最小化相关题目列表📕
题目列表来源:https://leetcode.cn/problems/maximize-the-minimum-powered-city/solutions/2050272/er-fen-da-an-qian-zhui-he-chai-fen-shu-z-jnyv/

2439. 最小化数组中的最大值
https://leetcode.cn/problems/minimize-maximum-of-array/

提示:
n == nums.length
2 <= n <= 10^5
0 <= nums[i] <= 10^9
解法1——二分答案
class Solution {public int minimizeArrayValue(int[] nums) {int l = Integer.MAX_VALUE, r = Integer.MIN_VALUE;for (int x: nums) {l = Math.min(l, x);r = Math.max(r, x);}while (l < r) {int mid = l + r >> 1;if (check(mid, nums)) r = mid;else l = mid + 1;}return l;}public boolean check(int k, int[] nums) {if (nums[0] > k) return false;long d = k - nums[0]; // 使用long防止溢出for (int i = 1; i < nums.length; ++i) {if (nums[i] <= k) d += k - nums[i];else {d -= nums[i] - k;if (d < 0) return false;}}return true;}
}
解法2——分类讨论O(n)
首先最大值的最小值是 nums[0]。
对于 nums[1],当其 < nums[0] 时,答案还是 nums[0];当其 > nums[0] 时,则答案是两者的平均向上取整。
class Solution {public int minimizeArrayValue(int[] nums) {long mx = 0, sum = 0;for (int i = 0; i < nums.length; ++i) {sum += nums[i];// (sum + i) / (i + 1) 是因为要向上取整mx = Math.max(mx, (sum + i) / (i + 1)); }return (int)mx;}
}
2513. 最小化两个数组中的最大值(二分答案+lcm+容斥原理)🐂好题!
https://leetcode.cn/problems/minimize-the-maximum-of-two-arrays/

提示:
2 <= divisor1, divisor2 <= 10^5
1 <= uniqueCnt1, uniqueCnt2 < 10^9
2 <= uniqueCnt1 + uniqueCnt2 <= 10^9
二分答案。
class Solution {public int minimizeSet(int divisor1, int divisor2, int uniqueCnt1, int uniqueCnt2) {long l = 0, r = (long)Integer.MAX_VALUE;while (l < r) {long mid = l + r >> 1;// 两个数组不能选择的数字数量long x = mid / divisor1, y = mid / divisor2, z = mid / lcm(divisor1, divisor2);long sum = uniqueCnt1 + uniqueCnt2 + z; // 至少需要的数字数量// arr1不能使用的,看arr2能不能使用;反之同理sum += Math.max(0, x - z - uniqueCnt2) + Math.max(0, y - z - uniqueCnt1);if (sum <= mid) r = mid;else l = mid + 1;}return (int)l;}// 最小公倍数public long lcm(long x, long y) {return x / gcd(x, y) * y;}// 最大公因数public long gcd(long x, long y) {return y == 0? x: gcd(y, x % y);}
}
相似题目(容斥原理+二分查找)
878. 第 N 个神奇数字
https://leetcode.cn/problems/nth-magical-number/


答案可能会很大,所以先将变量设置成 long 类型。
class Solution {final long MOD = (long)1e9 + 7;public int nthMagicalNumber(int n, int a, int b) {long c = lcm(a, b);long l = 2, r = Long.MAX_VALUE - 2;while (l < r) {long mid = l + r >> 1;long x = mid / a, y = mid / b, z = mid / c;long s = x + y - z; // 容斥原理if (s < n) l = mid + 1;else r = mid;}return (int)(l % MOD);}public long lcm(long a, long b) {return a * b / gcd(a, b);}public long gcd(long a, long b) {return b == 0? a: gcd(b, a % b);}
}
1201. 丑数 III
https://leetcode.cn/problems/ugly-number-iii/description/

提示:
1 <= n, a, b, c <= 10^9
1 <= a * b * c <= 10^18
本题结果在 [1, 2 * 10^9] 的范围内
注意这题也要先使用 long 数据类型。
class Solution {public int nthUglyNumber(int n, int a, int b, int c) {// 注意要转成longlong x = lcm(a, b), y = lcm(b, c), z = lcm(a, c), q = lcm(x, y);long l = 1, r = (long)2e9;while (l < r) {long mid = l + r >> 1;long aa = mid / a, bb = mid / b, cc = mid / c, xx = mid / x, yy = mid / y, zz = mid / z, qq = mid / q;// 容斥原理long s = aa + bb + cc - xx - yy - zz + qq;if (s < n) l = mid + 1;else r = mid;}return (int)l;}// 求最小公倍数public long lcm(long a, long b) {return a / gcd(a, b) * b;}// 求最大公因数public long gcd(long a, long b) {return b == 0? a: gcd(b, a % b);}
}
2517. 礼盒的最大甜蜜度(二分答案)
https://leetcode.cn/problems/maximum-tastiness-of-candy-basket/

提示:
2 <= k <= price.length <= 10^5
1 <= price[i] <= 10^9
class Solution {public int maximumTastiness(int[] price, int k) {Arrays.sort(price);int n = price.length, l = 0, r = price[n - 1] - price[0];while (l < r) {int mid = l + r + 1 >> 1;int s = 1, last = price[0];for (int i = 1; i < n && s < k; ++i) {if (price[i] - last >= mid) {s++;last = price[i];}}if (s < k) r = mid - 1;else l = mid;}return l;}
}
相关文章:
【算法】二分答案
文章目录 相关链接什么时候使用二分答案?题目列表最大化最小化相关题目列表📕2439. 最小化数组中的最大值解法1——二分答案解法2——分类讨论O(n) 2513. 最小化两个数组中的最大值(二分答案lcm容斥原理)🐂好题&#x…...
阿曼市场最全开发攻略,看这一篇就够了
中东是一个充满外贸机遇的市场,已经成为很多外贸人重点开发的市场。 阿曼的海岸南方和东方临阿拉伯海,东北方则抵阿曼湾。阿曼因为扼守着世界上最重要的石油输出通道——波斯湾和阿曼湾之间的霍尔木兹海峡,所以地理位置非常重要,…...
探讨UUID和Secrets:确保唯一性与数据安全的利器
😀前言 在现代软件开发中,唯一标识符(UUID)和机密信息的处理是至关重要的。UUID是用于唯一标识数据记录和对象的128位值,确保了全球范围内的唯一性。同时,Python的secrets模块为处理机密信息提供了强大的随…...
06-Redis缓存高可用集群
上一篇:05-Redis高可用集群之水平扩展 1.集群方案比较 哨兵模式 在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态,如果master节点异常,则会做主从切换,将某一台slave作为master,…...
LCP 18.早餐组合
题目来源: leetcode题目,网址:LCP 18. 早餐组合 - 力扣(LeetCode) 解题思路: 按序遍历饮料数组,二分查找符合要求 staple 中满足要求的最大值所在位置。最后返回所有*(最大位置…...
Tomcat调优【精简版】
Tomcat调优 优化Tomcat内存分配 调整Tomcat启动脚本contalina.sh,设置tomcat启动时分配的内存很可使用的最大内存; CATALINA_OPTS 调整Tomcat线程池 Tomcat默认使用的线程池:ThreadPoolExecutor 可以通过修改server.xml的 Connector 节点下的 maxThreads、minSpareThread…...
通过NDK编译C程序运行在iMX6q开发板上
在之前想要在Ubuntu系统中编译c语言程序为可执行文件并放在装有Android6.0.1系统的imx6q开发板上运行,采用gcc编译器进行编译的时候,虽然可以生成可执行文件但是却出现了错误,最终采用手段仍然无法在板子上运行,但是转换思路后&am…...
【学习笔记】Java 一对一培训(2.1)Java基础语法
【学习笔记】Java 一对一培训(2.1)Java基础语法 关键词:Java、Spring Boot、Idea、数据库、一对一、培训、教学本文主要内容含Java简介、Java基础语法、Java对象和类、Java基本数据类型、Java变量类型、Java修饰符计划2小时完成,…...
外贸独立站哪家好?推荐的独立站建站平台?
如何选外贸独立站搭建系统?创建贸易网站的工具有哪些? 在如今全球贸易不断蓬勃发展的背景下,外贸独立站成为许多企业拓展国际市场的首选之一。然而,要想在竞争激烈的市场中脱颖而出,选择一家合适的外贸独立站服务提供…...
六、变量与常量
变量与常量 1.变量与常量1.1标识符和关键字1.1.1.标识符1.1.2.关键字 1.2.声明变量1.3.声明常量1.4.变量的有效范围1.4.1.成员变量1.4.2.局部变量 1.5.训练11.6.训练2 —————————————————————————————————————————————————— …...
Fork() 函数:“父” 与 “子” 进程的交互(进程的创建)
阅读导航 前言一、fork函数初识1. 基本概念2. fork函数返回值 二、fork函数的写时拷贝三、总结温馨提示 前言 前面我们讲了C语言的基础知识,也了解了一些数据结构,并且讲了有关C的一些知识,也学习了一些Linux的基本操作,也了解并…...
JupyterNotebook设置Python环境的方法步骤
不多说,看链接。 https://stackoverflow.com/questions/39604271/conda-environments-not-showing-up-in-jupyter-notebook conda activate myenv pip install ipykernel python -m ipykernel install --user --name myenv --display-name "Python (myenv)&q…...
腾讯云阿里云云服务器 Linux 操作系统 BT 宝塔面板快速建站教程
宝塔面板概述 宝塔面板是一款服务器管理软件,支持Windows和Linux系统,可以通过Web端轻松管理服务器,提升运维效率。总体来说,宝塔面板具有操作简单、功能丰富、安全可靠等特点,是一款非常实用的服务器管理软件。 宝塔…...
【Linux】死锁理解
什么是死锁 因为资源调度的方式不合理或者资源的稀缺性,导致进程间的相互等待。 死锁的四个必要条件:互斥条件,请求和保持条件,环路等待条件,不可剥夺条件。 死锁的预防只要破坏死锁产生的四个必要条件。通常采用预…...
基于Java所涉及的人工智能的框架
11 References: [1] Java中人工智能的框架_永远的12的博客-CSDN博客...
【力扣】三角形最小路径和
目录 题目 例子 示例 1: 示例 2: 前言 思路 思想 代码 调用的函数 主函数 所有代码 力扣提交的代码 运行结果 小结 题目 给定一个三角形 triangle ,找出自顶向下的最小路径和。 每一步只能移动到下一行中相邻的结点上。相邻的结…...
【Linux】指针常量和常量指针
这个是指针常量,不能修改指向【其实就是引用的原型】:可以理解为const是否限制了星号 这个是常量指针,可以改指向,不能改值:...
LCP 22.黑白方格画
题目来源: leetcode题目,网址:LCP 22. 黑白方格画 - 力扣(LeetCode) 解题思路: 分别计算当涂0行,1行,2行.......时能否满足要求,若能ÿ…...
Java并发编程第8讲——ThreadLocal详解
ThreadLocal无论是在项目开发还是面试中都会经常碰到,它的重要性可见一斑,本篇文章就从ThreadLocal的使用、实现原理、核心方法的源码、内存泄漏问题等展开介绍一下。 一、什么是ThreadLocal ThreadLocal是java.lang下面的一个类,在JDK 1.2版…...
2023复旦大学计算机科学技术(网络空间安全)保研记录
BG:中九rank前5%、科研经历少、无竞赛 复旦大学计算机科学与技术--网络空间安全方向,参营4天(6.26-6.29),管午饭,住宿自理 6.26--报道听会,6.27--听会+实验室参观 给了…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
