【算法】二分答案
文章目录
- 相关链接
- 什么时候使用二分答案?
- 题目列表
- 最大化最小化相关题目列表📕
- 2439. 最小化数组中的最大值
- 解法1——二分答案
- 解法2——分类讨论O(n)
- 2513. 最小化两个数组中的最大值(二分答案+lcm+容斥原理)🐂好题!
- 相似题目(容斥原理+二分查找)
- 878. 第 N 个神奇数字
- 1201. 丑数 III
- 2517. 礼盒的最大甜蜜度(二分答案)
相关链接
【力扣周赛】第 362 场周赛(⭐差分&匹配&状态压缩DP&矩阵快速幂优化DP&KMP)里面有一些二分答案的题目。
【力扣周赛】第 363 场周赛(完全平方数和质因数分解) T3是二分答案。
什么时候使用二分答案?
看到「最大化最小值」或者「最小化最大值」就要想到二分答案,这是一个固定的套路。
或者
答案不好直接求,但是可以判断某个数字是否可以满足题目要求且单调时。
具体看下面例题体会一下即可。
题目列表
最大化最小化相关题目列表📕
题目列表来源:https://leetcode.cn/problems/maximize-the-minimum-powered-city/solutions/2050272/er-fen-da-an-qian-zhui-he-chai-fen-shu-z-jnyv/

2439. 最小化数组中的最大值
https://leetcode.cn/problems/minimize-maximum-of-array/

提示:
n == nums.length
2 <= n <= 10^5
0 <= nums[i] <= 10^9
解法1——二分答案
class Solution {public int minimizeArrayValue(int[] nums) {int l = Integer.MAX_VALUE, r = Integer.MIN_VALUE;for (int x: nums) {l = Math.min(l, x);r = Math.max(r, x);}while (l < r) {int mid = l + r >> 1;if (check(mid, nums)) r = mid;else l = mid + 1;}return l;}public boolean check(int k, int[] nums) {if (nums[0] > k) return false;long d = k - nums[0]; // 使用long防止溢出for (int i = 1; i < nums.length; ++i) {if (nums[i] <= k) d += k - nums[i];else {d -= nums[i] - k;if (d < 0) return false;}}return true;}
}
解法2——分类讨论O(n)
首先最大值的最小值是 nums[0]。
对于 nums[1],当其 < nums[0] 时,答案还是 nums[0];当其 > nums[0] 时,则答案是两者的平均向上取整。
class Solution {public int minimizeArrayValue(int[] nums) {long mx = 0, sum = 0;for (int i = 0; i < nums.length; ++i) {sum += nums[i];// (sum + i) / (i + 1) 是因为要向上取整mx = Math.max(mx, (sum + i) / (i + 1)); }return (int)mx;}
}
2513. 最小化两个数组中的最大值(二分答案+lcm+容斥原理)🐂好题!
https://leetcode.cn/problems/minimize-the-maximum-of-two-arrays/

提示:
2 <= divisor1, divisor2 <= 10^5
1 <= uniqueCnt1, uniqueCnt2 < 10^9
2 <= uniqueCnt1 + uniqueCnt2 <= 10^9
二分答案。
class Solution {public int minimizeSet(int divisor1, int divisor2, int uniqueCnt1, int uniqueCnt2) {long l = 0, r = (long)Integer.MAX_VALUE;while (l < r) {long mid = l + r >> 1;// 两个数组不能选择的数字数量long x = mid / divisor1, y = mid / divisor2, z = mid / lcm(divisor1, divisor2);long sum = uniqueCnt1 + uniqueCnt2 + z; // 至少需要的数字数量// arr1不能使用的,看arr2能不能使用;反之同理sum += Math.max(0, x - z - uniqueCnt2) + Math.max(0, y - z - uniqueCnt1);if (sum <= mid) r = mid;else l = mid + 1;}return (int)l;}// 最小公倍数public long lcm(long x, long y) {return x / gcd(x, y) * y;}// 最大公因数public long gcd(long x, long y) {return y == 0? x: gcd(y, x % y);}
}
相似题目(容斥原理+二分查找)
878. 第 N 个神奇数字
https://leetcode.cn/problems/nth-magical-number/


答案可能会很大,所以先将变量设置成 long 类型。
class Solution {final long MOD = (long)1e9 + 7;public int nthMagicalNumber(int n, int a, int b) {long c = lcm(a, b);long l = 2, r = Long.MAX_VALUE - 2;while (l < r) {long mid = l + r >> 1;long x = mid / a, y = mid / b, z = mid / c;long s = x + y - z; // 容斥原理if (s < n) l = mid + 1;else r = mid;}return (int)(l % MOD);}public long lcm(long a, long b) {return a * b / gcd(a, b);}public long gcd(long a, long b) {return b == 0? a: gcd(b, a % b);}
}
1201. 丑数 III
https://leetcode.cn/problems/ugly-number-iii/description/

提示:
1 <= n, a, b, c <= 10^9
1 <= a * b * c <= 10^18
本题结果在 [1, 2 * 10^9] 的范围内
注意这题也要先使用 long 数据类型。
class Solution {public int nthUglyNumber(int n, int a, int b, int c) {// 注意要转成longlong x = lcm(a, b), y = lcm(b, c), z = lcm(a, c), q = lcm(x, y);long l = 1, r = (long)2e9;while (l < r) {long mid = l + r >> 1;long aa = mid / a, bb = mid / b, cc = mid / c, xx = mid / x, yy = mid / y, zz = mid / z, qq = mid / q;// 容斥原理long s = aa + bb + cc - xx - yy - zz + qq;if (s < n) l = mid + 1;else r = mid;}return (int)l;}// 求最小公倍数public long lcm(long a, long b) {return a / gcd(a, b) * b;}// 求最大公因数public long gcd(long a, long b) {return b == 0? a: gcd(b, a % b);}
}
2517. 礼盒的最大甜蜜度(二分答案)
https://leetcode.cn/problems/maximum-tastiness-of-candy-basket/

提示:
2 <= k <= price.length <= 10^5
1 <= price[i] <= 10^9
class Solution {public int maximumTastiness(int[] price, int k) {Arrays.sort(price);int n = price.length, l = 0, r = price[n - 1] - price[0];while (l < r) {int mid = l + r + 1 >> 1;int s = 1, last = price[0];for (int i = 1; i < n && s < k; ++i) {if (price[i] - last >= mid) {s++;last = price[i];}}if (s < k) r = mid - 1;else l = mid;}return l;}
}
相关文章:
【算法】二分答案
文章目录 相关链接什么时候使用二分答案?题目列表最大化最小化相关题目列表📕2439. 最小化数组中的最大值解法1——二分答案解法2——分类讨论O(n) 2513. 最小化两个数组中的最大值(二分答案lcm容斥原理)🐂好题&#x…...
阿曼市场最全开发攻略,看这一篇就够了
中东是一个充满外贸机遇的市场,已经成为很多外贸人重点开发的市场。 阿曼的海岸南方和东方临阿拉伯海,东北方则抵阿曼湾。阿曼因为扼守着世界上最重要的石油输出通道——波斯湾和阿曼湾之间的霍尔木兹海峡,所以地理位置非常重要,…...
探讨UUID和Secrets:确保唯一性与数据安全的利器
😀前言 在现代软件开发中,唯一标识符(UUID)和机密信息的处理是至关重要的。UUID是用于唯一标识数据记录和对象的128位值,确保了全球范围内的唯一性。同时,Python的secrets模块为处理机密信息提供了强大的随…...
06-Redis缓存高可用集群
上一篇:05-Redis高可用集群之水平扩展 1.集群方案比较 哨兵模式 在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态,如果master节点异常,则会做主从切换,将某一台slave作为master,…...
LCP 18.早餐组合
题目来源: leetcode题目,网址:LCP 18. 早餐组合 - 力扣(LeetCode) 解题思路: 按序遍历饮料数组,二分查找符合要求 staple 中满足要求的最大值所在位置。最后返回所有*(最大位置…...
Tomcat调优【精简版】
Tomcat调优 优化Tomcat内存分配 调整Tomcat启动脚本contalina.sh,设置tomcat启动时分配的内存很可使用的最大内存; CATALINA_OPTS 调整Tomcat线程池 Tomcat默认使用的线程池:ThreadPoolExecutor 可以通过修改server.xml的 Connector 节点下的 maxThreads、minSpareThread…...
通过NDK编译C程序运行在iMX6q开发板上
在之前想要在Ubuntu系统中编译c语言程序为可执行文件并放在装有Android6.0.1系统的imx6q开发板上运行,采用gcc编译器进行编译的时候,虽然可以生成可执行文件但是却出现了错误,最终采用手段仍然无法在板子上运行,但是转换思路后&am…...
【学习笔记】Java 一对一培训(2.1)Java基础语法
【学习笔记】Java 一对一培训(2.1)Java基础语法 关键词:Java、Spring Boot、Idea、数据库、一对一、培训、教学本文主要内容含Java简介、Java基础语法、Java对象和类、Java基本数据类型、Java变量类型、Java修饰符计划2小时完成,…...
外贸独立站哪家好?推荐的独立站建站平台?
如何选外贸独立站搭建系统?创建贸易网站的工具有哪些? 在如今全球贸易不断蓬勃发展的背景下,外贸独立站成为许多企业拓展国际市场的首选之一。然而,要想在竞争激烈的市场中脱颖而出,选择一家合适的外贸独立站服务提供…...
六、变量与常量
变量与常量 1.变量与常量1.1标识符和关键字1.1.1.标识符1.1.2.关键字 1.2.声明变量1.3.声明常量1.4.变量的有效范围1.4.1.成员变量1.4.2.局部变量 1.5.训练11.6.训练2 —————————————————————————————————————————————————— …...
Fork() 函数:“父” 与 “子” 进程的交互(进程的创建)
阅读导航 前言一、fork函数初识1. 基本概念2. fork函数返回值 二、fork函数的写时拷贝三、总结温馨提示 前言 前面我们讲了C语言的基础知识,也了解了一些数据结构,并且讲了有关C的一些知识,也学习了一些Linux的基本操作,也了解并…...
JupyterNotebook设置Python环境的方法步骤
不多说,看链接。 https://stackoverflow.com/questions/39604271/conda-environments-not-showing-up-in-jupyter-notebook conda activate myenv pip install ipykernel python -m ipykernel install --user --name myenv --display-name "Python (myenv)&q…...
腾讯云阿里云云服务器 Linux 操作系统 BT 宝塔面板快速建站教程
宝塔面板概述 宝塔面板是一款服务器管理软件,支持Windows和Linux系统,可以通过Web端轻松管理服务器,提升运维效率。总体来说,宝塔面板具有操作简单、功能丰富、安全可靠等特点,是一款非常实用的服务器管理软件。 宝塔…...
【Linux】死锁理解
什么是死锁 因为资源调度的方式不合理或者资源的稀缺性,导致进程间的相互等待。 死锁的四个必要条件:互斥条件,请求和保持条件,环路等待条件,不可剥夺条件。 死锁的预防只要破坏死锁产生的四个必要条件。通常采用预…...
基于Java所涉及的人工智能的框架
11 References: [1] Java中人工智能的框架_永远的12的博客-CSDN博客...
【力扣】三角形最小路径和
目录 题目 例子 示例 1: 示例 2: 前言 思路 思想 代码 调用的函数 主函数 所有代码 力扣提交的代码 运行结果 小结 题目 给定一个三角形 triangle ,找出自顶向下的最小路径和。 每一步只能移动到下一行中相邻的结点上。相邻的结…...
【Linux】指针常量和常量指针
这个是指针常量,不能修改指向【其实就是引用的原型】:可以理解为const是否限制了星号 这个是常量指针,可以改指向,不能改值:...
LCP 22.黑白方格画
题目来源: leetcode题目,网址:LCP 22. 黑白方格画 - 力扣(LeetCode) 解题思路: 分别计算当涂0行,1行,2行.......时能否满足要求,若能ÿ…...
Java并发编程第8讲——ThreadLocal详解
ThreadLocal无论是在项目开发还是面试中都会经常碰到,它的重要性可见一斑,本篇文章就从ThreadLocal的使用、实现原理、核心方法的源码、内存泄漏问题等展开介绍一下。 一、什么是ThreadLocal ThreadLocal是java.lang下面的一个类,在JDK 1.2版…...
2023复旦大学计算机科学技术(网络空间安全)保研记录
BG:中九rank前5%、科研经历少、无竞赛 复旦大学计算机科学与技术--网络空间安全方向,参营4天(6.26-6.29),管午饭,住宿自理 6.26--报道听会,6.27--听会+实验室参观 给了…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
