当前位置: 首页 > news >正文

R语言进行孟德尔随机化+meta分析(1)---meta分析基础

目前不少文章用到了孟德尔随机化+meta分析,今天咱们也来介绍一下,孟德尔随机化+meta其实主要就是meta分析的过程,提取了孟德尔随机化文章的结果,实质上就是个meta分析,不过多个孟德尔随机化随机化的结果合并更加加强了结果的可靠性。有部分人可能对meta分析不是很了解,咱们今天先来介绍一下meta分析基础,为下一讲孟德尔随机化+meta分析做准备。
在这里插入图片描述
R语言进行进行meta分析咱们就做最基本的部分就行,不必搞得太复杂。咱们先导入数据和R包。很多R包都能做,咱们随便选个meta包就可以了。

library(meta)
bc<-read.csv("E:/r/test/senlintu1.csv",sep=',',header=TRUE)
names(bc)

在这里插入图片描述
这是一个很简单的数据,stud表示研究名称,a为实验组阳性人数,b为实验组总人数,c为对照组阳性人数,d为对照组总人数(公众号回复:森林图数据1,可以获得数据)。
咱们先来看下函数格式event.e就是实验组阳性人数,n.e,实验组总人数,event.c对照组阳性人数,n.c对照组总人数,data就是你的数据,studlab填入其他的项目,method这里选"Inverse"倒方差的方法就可以了,sm这里填入结果类型,如果你需要的是OR的结果就填入OR

metabin(event.e, n.e, event.c, n.c, data,studlab = paste(), sm, method = "Inverse")

先生成meta分析结果,就按顺序把结果填进去就可以了

out<-metabin(event.e=a, n.e=b,event.c=c,n.c=d,data=bc,sm="OR",studlab = paste(study),method = "Inverse")

直接填进去也是可以的,这样方便点

out<-metabin(a,b,c,d,data=bc,sm="OR",studlab = paste(study),method = "Inverse")

解析结果

summary(out)

在这里插入图片描述
我简单解析一下,这类教程网络多得是,可以百度一下。先看异质性,如果有异质性应需用随机效应模型,否则可选用固定效应模型。我们这里选择随机效应模型。
我这里异质性I89.9%挺大的,我们可以使用剔除法来观察剔除单个观察后的异质性,我这里随便举例,假如我剔除第一个
先加个ID

bc$id<-1:13

在这里插入图片描述
删除第一项我们可以使用亚组函数subset来控制,使得subset=id>2就可以了

out<-metabin(a,b,c,d,data=bc,sm="OR",studlab = paste(study),method = "Inverse",common=F,subset=id>2)
summary(out)

在这里插入图片描述
可以看到异质性较前下降了一点,接下来就可以绘制森林图了

out<-metabin(a,b,c,d,data=bc,sm="OR",studlab = paste(study),method = "Inverse",common=F)forest(out)

在这里插入图片描述
所有结果都可以在图上找到,结果主要是看最后的综合结果,我这里的OR是2.09.接下来做偏倚检查,主要是漏斗图和Egger法
漏斗图,比较理想的漏斗图应该是散点对称分布

funnel(out)

在这里插入图片描述
Egger法,P值大于0.05说明没有偏倚,还给出了参考文献

metabias(out,method.bias="Egger")

在这里插入图片描述
这里还有一个peters法,参考文献是篇JAMA的文章,应该也是蛮靠谱的

metabias(out,method.bias="peters")

在这里插入图片描述
这里简单的介绍了一下meta分析的操作,肯定没有别人专门将meta分析的详细,如果想进行孟德尔随机化+meta分析最好去补一补meta分析的知识。

相关文章:

R语言进行孟德尔随机化+meta分析(1)---meta分析基础

目前不少文章用到了孟德尔随机化meta分析&#xff0c;今天咱们也来介绍一下&#xff0c;孟德尔随机化meta其实主要就是meta分析的过程&#xff0c;提取了孟德尔随机化文章的结果&#xff0c;实质上就是个meta分析&#xff0c;不过多个孟德尔随机化随机化的结果合并更加加强了结…...

网络安全第一次作业

1、什么是防火墙 防火墙是一种网络安全系统&#xff0c;它根据预先确定的安全规则监视和控制传入和传出的网络流量。其主要目的是阻止对计算机或网络的未经授权的访问&#xff0c;同时允许合法通信通过。 防火墙可以在硬件、软件或两者的组合中实现&#xff0c;并且可以配置为根…...

idea设置gradle

1、不选中 2、下面选specified location 指定gradle目录...

基于Elasticsearch的多文档检索 比如 商品(goods)、案例(cases)

概述 Elasticsearch多文档聚合检索 详细 记得把这几点描述好咯&#xff1a;需求&#xff08;要做什么&#xff09; 代码实现过程 项目文件结构截图 演示效果 应用场景 我们需要在五种不同的文档中检索数据。 比如 商品&#xff08;goods&#xff09;、案例&#xff08;ca…...

9月18日,每日信息差

今天是2023年09月19日&#xff0c;以下是为您准备的11条信息差 第一、江苏无锡首次获得6000年前古人类DNA 第二、全球天然钻石价格暴跌。数据显示&#xff0c;国际钻石交易所钻石价格指数在2022年3月达到158的历史峰值&#xff0c;之后一路下跌到目前的110左右&#xff0c;创…...

基于FPGA实现FPDLINK III

功能概述 本模块主要包含FPDLINKIII/CML收发信号与HDMI/SDI/USB信号、千兆网络信号&#xff0c;支持客户按照按照指定功能定制 当前默认功能为FPD LINK III/CML转为HDMI/SDI/UVC信号 性能参数 名称 描述 供电接口 DC12V FPD LINK RX GM8914 FPD LINK TX GM8913 千兆网…...

[补题记录] Atcoder Beginner Contest 309(E)

URL&#xff1a;https://atcoder.jp/contests/abc309 目录 E Problem/题意 Thought/思路 解法一&#xff1a; 解法二&#xff1a; Code/代码 E Problem/题意 一个家庭有 N 个人&#xff0c;根节点为 1&#xff0c;给出 2 ~ N 的父节点。一共购买 M 次保险&#xff0c;每…...

【HarmonyOS】解决API6 WebView跳转外部浏览器问题、本地模拟器启动黑屏

【问题描述1】 HarmonyOS API6 Java开发中使用WebView组件&#xff0c;如果网页中有跳转链接&#xff0c;点击会跳转到手机系统浏览器。 【解决方案】 解决这个问题的方法就是给WebView这种自定义的WebAgent对象。具体代码如下&#xff1a; WebConfig webConfigthis.webView…...

给出三个整数,判断大小

7-2 比较大小 给出三个整数&#xff0c;判断大小。 输入格式: 给出三个整数a,b,c 输出格式: 在一行中依次从小到大的顺序输出&#xff0c;两数之间有一个空格&#xff0c;无多余空格。 输入样例: 在这里给出一组输入。例如&#xff1a; 2 1 5 输出样例: 在这里给出相应的输…...

优化软件系统,解决死锁问题,提升稳定性与性能 redis排队下单

项目背景&#xff1a; 随着用户数量的不断增加&#xff0c;我们的速卖通小管家软件系统面临了一个日益严重的问题&#xff1a;在从存储区提供程序的数据读取器中进行读取时&#xff0c;频繁出现错误。系统报告了一个内部异常: 异常信息如下&#xff1a; 从存储区提供程序的数…...

MyBatisPlus 底层用 json 存储,Java 仍然使用 对象操作

PO 类的字段定义为一个对象&#xff0c;然后使用以下注解修饰 TableField(typeHandler JacksonTypeHandler.class) 当然 jsonTypeHandler 有多种可以选择...

发送验证码倒计时 防刷新重置!!!

需求&#xff1a;发送验证码&#xff0c;每60s可点击发送一次&#xff0c;倒计时中按钮不可点击&#xff0c;且刷新页面倒计时不会重置 可用以下方式避免刷新页面时&#xff0c;倒计时重置 localStorage本地缓存方式 思路&#xff1a; 1.记录倒计时的时间 2.页面加载时&…...

OpenCV项目开发实战--forEach的并行像素访问与其它方法的性能比较

在本教程中,我们将比较Mat 类的forEach方法与 OpenCV 中访问和转换像素值的其他方法的性能。我们将展示forEach如何比简单地使用at方法甚至有效地使用指针算术快得多。 OpenCV 内部有一些隐藏的宝石,有时并不为人所知。这些隐藏的宝石之一是Mat 类的forEach方法,它利用计算…...

cv::Mat 的常见操作方法

cv::Mat是OpenCV库中用于处理图像和矩阵的主要数据结构。以下是一些常见的cv::Mat操作方法&#xff1a; 创建和初始化 cv::Mat::Mat(): 创建一个空的cv::Mat对象。cv::Mat::Mat(int rows, int cols, int type): 创建一个指定行数、列数和数据类型的cv::Mat对象。cv::Mat::Mat(i…...

JVM——11.JVM小结

这篇文章我们来小结一下JVM JVM&#xff0c;即java虚拟机&#xff0c;是java代码运行时的环境。我们从底层往上层来说&#xff0c;分别是硬件部分&#xff0c;操作系统&#xff0c;JVM&#xff0c;jre&#xff0c;JDK&#xff0c;java代码。JVM是直接与操作系统打交道的。JVM也…...

月木学途开发 2.前台用户模块

概述 效果展 数据库设计 会员表 DROP TABLE IF EXISTS user_type; CREATE TABLE user_type (userTypeId int(11) NOT NULL AUTO_INCREMENT,userTypeName varchar(255) DEFAULT NULL,userTypeDesc varchar(255) DEFAULT NULL,PRIMARY KEY (userTypeId) ) ENGINEInnoDB AUTO_I…...

buuctf-ciscn_s_3

一、srop 参考文章-博客园-wudiiv11&#xff08;作者&#xff09;-BUUCTF-ciscn_2019_s_3 参考文章-博客园-z2yh&#xff08;作者&#xff09;-Srop 原理与利用方法 vlun函数中没有分配栈帧&#xff08;指rsp没有增长&#xff0c;也没有压入父函数的rbp&#xff0c;这也导致…...

3D模型格式转换工具HOOPS Exchange协助Epic Games实现CAD数据轻松导入虚幻引擎

一、面临的挑战 Epic Games最为人所知的身份可能是广受欢迎的在线视频游戏Fortnite的开发商&#xff0c;但它也是虚幻引擎背后的团队&#xff0c;虚幻引擎是一种实时3D创作工具&#xff0c;为世界领先的游戏提供动力&#xff0c;并且也被电影电视、建筑、汽车、制造、模拟等领…...

Linux- inode vnode

什么是inode inode 是 UNIX 和 UNIX-like 操作系统中的一个关键概念。它代表了文件系统中文件或目录的元数据。每个文件和目录在文件系统中都有一个与之关联的 inode。这个数据结构存储了关于文件的所有信息&#xff0c;除了其名称和实际数据之外。 以下是 inode 中通常包含的…...

不来看看?通过Python实现贪吃蛇小游戏

&#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Python》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是有一定基础的程序员&#xff0c;这个专…...

C# linq初探 使用linq查询数组中元素

使用linq进行数组查询 输出数组中全部的偶数并升序输出结果 写法1&#xff1a; int[] numbers { 5, 10, 8, 3, 6, 12 }; //查询的数组var numqurey from num in numberswhere num % 2 0 //按照条件过滤orderby numselect num;foreach (var num in numqurey){Console.Writ…...

使用线程池进行任务处理

线程池 线程池&#xff1a;一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分…...

ES6之Map和Set有什么不同?

一、Map 1.定义 Map是ES6提供的一种新的数据结构&#xff0c;它是键值对的集合&#xff0c;类似于对象&#xff0c;但是键的范围不限于字符串&#xff0c;各种类型的值都可以当做键。 Object结构是“字符串-值”的对应&#xff0c;Map结构则是“值-值”的对应 2.代码示例 M…...

Java中的集合

Java中的集合分为单列集合和双列集合&#xff0c;单列集合顶级接口为Collection&#xff0c;双列集合顶级接口为Map。 Collection 的子接口有两个&#xff1a;List和Set。 List 接口的特点&#xff1a;元素可重复&#xff0c;有序&#xff08;存取顺序&#xff09;。 List 接…...

9.4.2servlet基础2

一.SmartTomcat 1.第一次使用需要进行配置. 二.异常处理 1.404:浏览器访问的资源,在服务器上不存在. a.检查请求的路径和服务器配置的是否一致(大小写,空格,标点符号). b. 确认webapp是否被正确加载(检查web.xml没有/目录错误/内容错误/名字拼写错误)(多多关注日志信息). 2…...

嵌入式学习 - 用电控制电

目录 前言&#xff1a; 1、继电器 2、二极管 3、三极管 3.1 特殊的三极管-mos管 3.2 npn类型三极管 3.3 pnp类型三极管 3.4 三极管的放大特性 3.5 mos管和三极管的区别 前言&#xff1a; 计算机的工作的核心原理&#xff1a;用电去控制电。 所有的电子元件都有数据手册…...

QCA组态如何科学命名?

前言 &#xff08;一&#xff09;文献来源 文献来源&#xff1a;[1]Furnari S, Crilly D, Misangyi V F, et al. Capturing causal complexity: Heuristics for configurational theorizing[J]. Academy of Management Review, 2021, 46(4): 778-799. &#xff08;二&#xff…...

外贸行业中常用的邮箱推荐

随着全球贸易的不断发展&#xff0c;外贸行业越来越重要。在这个过程中&#xff0c;电子邮件作为一种重要的沟通工具&#xff0c;扮演着关键的角色。然而&#xff0c;对于许多外贸从业者来说&#xff0c;选择合适的邮箱服务并不容易。本文将探讨外贸邮箱和普通邮箱的区别&#…...

高性能实践

1、认识性能 从用户体验来看&#xff0c;性能就是响应时间短&#xff1b; 从开发角度来看&#xff0c;性能主要是执行效率高。 性能主要表现形式如下&#xff1a; &#xff08;1&#xff09;响应时间&#xff0c;AVG、MAX、MIN、TP95、TP99 &#xff08;2&#xff09;吞吐…...

说说hashCode() 和 equals() 之间的关系?

每天一道面试题&#xff0c;陪你突击金九银十&#xff01; 上一篇关于介绍Object类下的几种方法时面试题时&#xff0c;提到equals()和hashCode()方法可能引出关于“hashCode() 和 equals() 之间的关系&#xff1f;”的面试题&#xff0c;本篇来解析一下这道基础面试题。 先祭一…...

网站开发长期合作/企业管理咨询培训

内容目录1.背景故事2.概述3.用户画像流程3.1整体流程3.2用户为什么进行标注3.3用户如何打标签3.3.1数据结构3.3.2用户画像模块3.3.3数据指标体系3.3.4常见的数据清洗问题问题1&#xff1a;缺失值问题2&#xff1a;空行问题3&#xff1a;列数据的单位不统一问题4&#xff1a;非A…...

wordpress 获取分类文章/seo推广的常见目的有

http://www.cnblogs.com/newpanderking/archive/2011/10/03/2198648.html 讲得很详细。。。我没明白。...

购物系统顺序图/北京谷歌seo公司

如果觉得我的算法分享对你有帮助,欢迎关注我的微信公众号“圆圆的算法笔记”,更多算法笔记、算法交流,以及世间万物的学习记录~ NLP中,预训练大模型Finetune是一种非常常见的解决问题的范式。利用在海量文本上预训练得到的Bert、GPT等模型,在下游不同任务上分别进行finet…...

用电脑做网站/app推广拉新工作可靠吗

工厂模式&#xff08;Factory Pattern&#xff09;是 Java 中最常用的设计模式之一。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。 1. 为什么要有工厂模式? "Talk is cheap,show me the code". 想要找到这个问题的答案&#xff0…...

自己的域名怎么做网站/现在最好的营销方式

我先贴出最终转换的代码&#xff0c;再来进行一步一步的介绍&#xff1a; /*** 将int数值转换为占四个字节的byte数组** param value 要转换的int值* return byte数组*/ public static byte[] intToBytes(int value ) {byte[] src new byte[4];src[0] (byte) (value & …...

做网站公司青岛/app制作

其实用python的人应该都是不关注它性能的人&#xff0c;毕竟写python确实很愉快 PHP的核心维护者花了很多的心血却提高底层的解释器效率&#xff0c;为什么Python的维护者不去呢&#xff1f; 程序员都喜欢用数据说话&#xff0c;这里我用的python版本是Python 3.6.2(64位)&…...