当前位置: 首页 > news >正文

R语言进行孟德尔随机化+meta分析(1)---meta分析基础

目前不少文章用到了孟德尔随机化+meta分析,今天咱们也来介绍一下,孟德尔随机化+meta其实主要就是meta分析的过程,提取了孟德尔随机化文章的结果,实质上就是个meta分析,不过多个孟德尔随机化随机化的结果合并更加加强了结果的可靠性。有部分人可能对meta分析不是很了解,咱们今天先来介绍一下meta分析基础,为下一讲孟德尔随机化+meta分析做准备。
在这里插入图片描述
R语言进行进行meta分析咱们就做最基本的部分就行,不必搞得太复杂。咱们先导入数据和R包。很多R包都能做,咱们随便选个meta包就可以了。

library(meta)
bc<-read.csv("E:/r/test/senlintu1.csv",sep=',',header=TRUE)
names(bc)

在这里插入图片描述
这是一个很简单的数据,stud表示研究名称,a为实验组阳性人数,b为实验组总人数,c为对照组阳性人数,d为对照组总人数(公众号回复:森林图数据1,可以获得数据)。
咱们先来看下函数格式event.e就是实验组阳性人数,n.e,实验组总人数,event.c对照组阳性人数,n.c对照组总人数,data就是你的数据,studlab填入其他的项目,method这里选"Inverse"倒方差的方法就可以了,sm这里填入结果类型,如果你需要的是OR的结果就填入OR

metabin(event.e, n.e, event.c, n.c, data,studlab = paste(), sm, method = "Inverse")

先生成meta分析结果,就按顺序把结果填进去就可以了

out<-metabin(event.e=a, n.e=b,event.c=c,n.c=d,data=bc,sm="OR",studlab = paste(study),method = "Inverse")

直接填进去也是可以的,这样方便点

out<-metabin(a,b,c,d,data=bc,sm="OR",studlab = paste(study),method = "Inverse")

解析结果

summary(out)

在这里插入图片描述
我简单解析一下,这类教程网络多得是,可以百度一下。先看异质性,如果有异质性应需用随机效应模型,否则可选用固定效应模型。我们这里选择随机效应模型。
我这里异质性I89.9%挺大的,我们可以使用剔除法来观察剔除单个观察后的异质性,我这里随便举例,假如我剔除第一个
先加个ID

bc$id<-1:13

在这里插入图片描述
删除第一项我们可以使用亚组函数subset来控制,使得subset=id>2就可以了

out<-metabin(a,b,c,d,data=bc,sm="OR",studlab = paste(study),method = "Inverse",common=F,subset=id>2)
summary(out)

在这里插入图片描述
可以看到异质性较前下降了一点,接下来就可以绘制森林图了

out<-metabin(a,b,c,d,data=bc,sm="OR",studlab = paste(study),method = "Inverse",common=F)forest(out)

在这里插入图片描述
所有结果都可以在图上找到,结果主要是看最后的综合结果,我这里的OR是2.09.接下来做偏倚检查,主要是漏斗图和Egger法
漏斗图,比较理想的漏斗图应该是散点对称分布

funnel(out)

在这里插入图片描述
Egger法,P值大于0.05说明没有偏倚,还给出了参考文献

metabias(out,method.bias="Egger")

在这里插入图片描述
这里还有一个peters法,参考文献是篇JAMA的文章,应该也是蛮靠谱的

metabias(out,method.bias="peters")

在这里插入图片描述
这里简单的介绍了一下meta分析的操作,肯定没有别人专门将meta分析的详细,如果想进行孟德尔随机化+meta分析最好去补一补meta分析的知识。

相关文章:

R语言进行孟德尔随机化+meta分析(1)---meta分析基础

目前不少文章用到了孟德尔随机化meta分析&#xff0c;今天咱们也来介绍一下&#xff0c;孟德尔随机化meta其实主要就是meta分析的过程&#xff0c;提取了孟德尔随机化文章的结果&#xff0c;实质上就是个meta分析&#xff0c;不过多个孟德尔随机化随机化的结果合并更加加强了结…...

网络安全第一次作业

1、什么是防火墙 防火墙是一种网络安全系统&#xff0c;它根据预先确定的安全规则监视和控制传入和传出的网络流量。其主要目的是阻止对计算机或网络的未经授权的访问&#xff0c;同时允许合法通信通过。 防火墙可以在硬件、软件或两者的组合中实现&#xff0c;并且可以配置为根…...

idea设置gradle

1、不选中 2、下面选specified location 指定gradle目录...

基于Elasticsearch的多文档检索 比如 商品(goods)、案例(cases)

概述 Elasticsearch多文档聚合检索 详细 记得把这几点描述好咯&#xff1a;需求&#xff08;要做什么&#xff09; 代码实现过程 项目文件结构截图 演示效果 应用场景 我们需要在五种不同的文档中检索数据。 比如 商品&#xff08;goods&#xff09;、案例&#xff08;ca…...

9月18日,每日信息差

今天是2023年09月19日&#xff0c;以下是为您准备的11条信息差 第一、江苏无锡首次获得6000年前古人类DNA 第二、全球天然钻石价格暴跌。数据显示&#xff0c;国际钻石交易所钻石价格指数在2022年3月达到158的历史峰值&#xff0c;之后一路下跌到目前的110左右&#xff0c;创…...

基于FPGA实现FPDLINK III

功能概述 本模块主要包含FPDLINKIII/CML收发信号与HDMI/SDI/USB信号、千兆网络信号&#xff0c;支持客户按照按照指定功能定制 当前默认功能为FPD LINK III/CML转为HDMI/SDI/UVC信号 性能参数 名称 描述 供电接口 DC12V FPD LINK RX GM8914 FPD LINK TX GM8913 千兆网…...

[补题记录] Atcoder Beginner Contest 309(E)

URL&#xff1a;https://atcoder.jp/contests/abc309 目录 E Problem/题意 Thought/思路 解法一&#xff1a; 解法二&#xff1a; Code/代码 E Problem/题意 一个家庭有 N 个人&#xff0c;根节点为 1&#xff0c;给出 2 ~ N 的父节点。一共购买 M 次保险&#xff0c;每…...

【HarmonyOS】解决API6 WebView跳转外部浏览器问题、本地模拟器启动黑屏

【问题描述1】 HarmonyOS API6 Java开发中使用WebView组件&#xff0c;如果网页中有跳转链接&#xff0c;点击会跳转到手机系统浏览器。 【解决方案】 解决这个问题的方法就是给WebView这种自定义的WebAgent对象。具体代码如下&#xff1a; WebConfig webConfigthis.webView…...

给出三个整数,判断大小

7-2 比较大小 给出三个整数&#xff0c;判断大小。 输入格式: 给出三个整数a,b,c 输出格式: 在一行中依次从小到大的顺序输出&#xff0c;两数之间有一个空格&#xff0c;无多余空格。 输入样例: 在这里给出一组输入。例如&#xff1a; 2 1 5 输出样例: 在这里给出相应的输…...

优化软件系统,解决死锁问题,提升稳定性与性能 redis排队下单

项目背景&#xff1a; 随着用户数量的不断增加&#xff0c;我们的速卖通小管家软件系统面临了一个日益严重的问题&#xff1a;在从存储区提供程序的数据读取器中进行读取时&#xff0c;频繁出现错误。系统报告了一个内部异常: 异常信息如下&#xff1a; 从存储区提供程序的数…...

MyBatisPlus 底层用 json 存储,Java 仍然使用 对象操作

PO 类的字段定义为一个对象&#xff0c;然后使用以下注解修饰 TableField(typeHandler JacksonTypeHandler.class) 当然 jsonTypeHandler 有多种可以选择...

发送验证码倒计时 防刷新重置!!!

需求&#xff1a;发送验证码&#xff0c;每60s可点击发送一次&#xff0c;倒计时中按钮不可点击&#xff0c;且刷新页面倒计时不会重置 可用以下方式避免刷新页面时&#xff0c;倒计时重置 localStorage本地缓存方式 思路&#xff1a; 1.记录倒计时的时间 2.页面加载时&…...

OpenCV项目开发实战--forEach的并行像素访问与其它方法的性能比较

在本教程中,我们将比较Mat 类的forEach方法与 OpenCV 中访问和转换像素值的其他方法的性能。我们将展示forEach如何比简单地使用at方法甚至有效地使用指针算术快得多。 OpenCV 内部有一些隐藏的宝石,有时并不为人所知。这些隐藏的宝石之一是Mat 类的forEach方法,它利用计算…...

cv::Mat 的常见操作方法

cv::Mat是OpenCV库中用于处理图像和矩阵的主要数据结构。以下是一些常见的cv::Mat操作方法&#xff1a; 创建和初始化 cv::Mat::Mat(): 创建一个空的cv::Mat对象。cv::Mat::Mat(int rows, int cols, int type): 创建一个指定行数、列数和数据类型的cv::Mat对象。cv::Mat::Mat(i…...

JVM——11.JVM小结

这篇文章我们来小结一下JVM JVM&#xff0c;即java虚拟机&#xff0c;是java代码运行时的环境。我们从底层往上层来说&#xff0c;分别是硬件部分&#xff0c;操作系统&#xff0c;JVM&#xff0c;jre&#xff0c;JDK&#xff0c;java代码。JVM是直接与操作系统打交道的。JVM也…...

月木学途开发 2.前台用户模块

概述 效果展 数据库设计 会员表 DROP TABLE IF EXISTS user_type; CREATE TABLE user_type (userTypeId int(11) NOT NULL AUTO_INCREMENT,userTypeName varchar(255) DEFAULT NULL,userTypeDesc varchar(255) DEFAULT NULL,PRIMARY KEY (userTypeId) ) ENGINEInnoDB AUTO_I…...

buuctf-ciscn_s_3

一、srop 参考文章-博客园-wudiiv11&#xff08;作者&#xff09;-BUUCTF-ciscn_2019_s_3 参考文章-博客园-z2yh&#xff08;作者&#xff09;-Srop 原理与利用方法 vlun函数中没有分配栈帧&#xff08;指rsp没有增长&#xff0c;也没有压入父函数的rbp&#xff0c;这也导致…...

3D模型格式转换工具HOOPS Exchange协助Epic Games实现CAD数据轻松导入虚幻引擎

一、面临的挑战 Epic Games最为人所知的身份可能是广受欢迎的在线视频游戏Fortnite的开发商&#xff0c;但它也是虚幻引擎背后的团队&#xff0c;虚幻引擎是一种实时3D创作工具&#xff0c;为世界领先的游戏提供动力&#xff0c;并且也被电影电视、建筑、汽车、制造、模拟等领…...

Linux- inode vnode

什么是inode inode 是 UNIX 和 UNIX-like 操作系统中的一个关键概念。它代表了文件系统中文件或目录的元数据。每个文件和目录在文件系统中都有一个与之关联的 inode。这个数据结构存储了关于文件的所有信息&#xff0c;除了其名称和实际数据之外。 以下是 inode 中通常包含的…...

不来看看?通过Python实现贪吃蛇小游戏

&#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Python》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是有一定基础的程序员&#xff0c;这个专…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...