当前位置: 首页 > news >正文

堆的OJ题

       🔥🔥 欢迎来到小林的博客!!
      🛰️博客主页:✈️林 子
      🛰️博客专栏:✈️ 小林的算法笔记
      🛰️社区 :✈️ 进步学堂
      🛰️欢迎关注:👍点赞🙌收藏✍️留言

目录

  • 703. 数据流中的第 K 大元素
  • 692. 前K个高频单词
  • 295. 数据流的中位数

703. 数据流中的第 K 大元素

题目链接:703. 数据流中的第 K 大元素

题目描述:

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

  • KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
  • int add(int val)val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

示例:

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

提示:

  • 1 <= k <= 104
  • 0 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • -104 <= val <= 104
  • 最多调用 add 方法 104
  • 题目数据保证,在查找第 k 大元素时,数组中至少有 k 个元素

解题思路: 这一题是典型的topK问题,第K大我们可以建小堆。第K小我们可以建大堆。为什么要这样呢?因为建小堆的话,我们的堆顶就是最小的。我Top一个后,新的堆顶就是倒数第二小的。当我们的堆只有的元素只有K个的时候。那么堆顶的元素就是 nums.size - k小的。反过来就是第K大的。nums这里指的是整个数组。

假设整个数组的大小为 7 , k 为6。 那么当堆的大小为6时,堆顶的元素就是 nums.size - 1(nums.size - heap.size)。也就是第6大的数。所以,TOPK问题找第K大建小堆,找第K小建大堆,我们要反着来。虽然正着来也可以解决单纯的topK问题,但是这一题是有add操作的,如果正着来。那么前面pop掉最大的数据就丢失了。而最小的数据却没有关系,因为小堆存的是最大的K个数。堆顶是最大K个数中最小的一个。

在这里插入图片描述

所以这一题我们可以建一个小堆。然后把nums所有的数push进去,最后再把堆pop到K的大小。而每次add就push一次,再pop一次,即可维持堆的大小为K。

代码:

class KthLargest {
public:priority_queue<int,vector<int>,greater<int>> _min_heap;int _k;KthLargest(int k, vector<int>& nums) {_k = k ;for(auto& n : nums)_min_heap.push(n); while(_min_heap.size() > k) _min_heap.pop();}int add(int val) {_min_heap.push(val);if(_min_heap.size() > _k) _min_heap.pop();return _min_heap.top();}
};

运行结果:

在这里插入图片描述

692. 前K个高频单词

题目链接: 692. 前K个高频单词

题目描述:

给定一个单词列表 words 和一个整数 k ,返回前 k 个出现次数最多的单词。

返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率, 按字典顺序 排序。

示例 1:

输入: words = ["i", "love", "leetcode", "i", "love", "coding"], k = 2
输出: ["i", "love"]
解析: "i" 和 "love" 为出现次数最多的两个单词,均为2次。注意,按字母顺序 "i" 在 "love" 之前。

示例 2:

输入: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
输出: ["the", "is", "sunny", "day"]
解析: "the", "is", "sunny" 和 "day" 是出现次数最多的四个单词,出现次数依次为 4, 3, 2 和 1 次。

注意:

  • 1 <= words.length <= 500
  • 1 <= words[i] <= 10
  • words[i] 由小写英文字母组成。
  • k 的取值范围是 [1, **不同** words[i] 的数量]

**进阶:**尝试以 O(n log k) 时间复杂度和 O(n) 空间复杂度解决。

解题思路:

首先这一题有2个关键点,第一点是按频次比较。第二点是频次相同时,按字母序排序。所以这里我们要一个哈希表来统治所有字符串出现的次数。然后再把哈希表的这一对key,value值入堆,而堆的大小也和上题一样设置为K个。因为频次取前K个,所以我们对频次用小根堆排。但是频次相同的字符串又要按字母序排,所以对字母序排序我们又要用大堆。

比如第一个用例。我们用堆排好序是这样的。频次用小根堆排,而频次相同,我们则按大根堆对string排。

在这里插入图片描述

而因为我们的K为2,所以堆的大小只能是2。最后变成这样。

在这里插入图片描述

而此时我TOP得到的是字母序较大的值,所以我们在把堆的值填入返回的string数组时需要倒着填,因为小的要放在前面。

要实现这种排序,我们需要自己写一个cmp函数,作为priority_queue的第三个模板参数。

代码:

class Solution {typedef pair<string,int> PSI; //排序的仿函数struct cmp{bool operator()(const PSI& a ,const PSI& b){if(a.second == b.second){//频次相同,用大根堆排return a.first < b.first;  //小的放下面}return a.second > b.second; //小根堆排,大的放下面}};public:vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string,int> map; //1.统计所有字符出现次数for(auto& word : words) map[word]++; //2.将哈希表所有元素入堆priority_queue<PSI,vector<PSI>,cmp> heap; for(auto& it : map) heap.push({it.first,it.second}); //堆的大小只能为k while(heap.size() > k) heap.pop(); //将堆的元素逆序放到ret数组中vector<string> ret(k); for(int i = k - 1; i >= 0 ; i--){//将堆顶字符串放在数组的尾部,逆序放ret[i] = heap.top().first;heap.pop();}return ret;}
};

运行结果:

在这里插入图片描述

295. 数据流的中位数

题目链接:[295. 数据流的中位数

题目描述:

中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。

  • 例如 arr = [2,3,4] 的中位数是 3
  • 例如 arr = [2,3] 的中位数是 (2 + 3) / 2 = 2.5

实现 MedianFinder 类:

  • MedianFinder() 初始化 MedianFinder 对象。
  • void addNum(int num) 将数据流中的整数 num 添加到数据结构中。
  • double findMedian() 返回到目前为止所有元素的中位数。与实际答案相差 10-5 以内的答案将被接受。

示例 1:

输入
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
输出
[null, null, null, 1.5, null, 2.0]解释
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1);    // arr = [1]
medianFinder.addNum(2);    // arr = [1, 2]
medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2)
medianFinder.addNum(3);    // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

提示:

  • -105 <= num <= 105
  • 在调用 findMedian 之前,数据结构中至少有一个元素
  • 最多 5 * 104 次调用 addNumfindMedian

解题思路:

题目是找中位数,那么我们可以用2个堆。一个大堆,一个小端。大于中位数的值放小堆里面,小于等于中位数的值放大堆里面。我们只需要保证两个堆的大小相等,或者大堆的大小比小堆大1。每当一次add操作时,我们先判断两个堆大小是否相等。如果相等,则说明要往大堆push数据,那么我们先把num放进小堆,再取小堆的堆顶放入大堆,这样大堆的长度就+1了。如果不相等,说明大堆的大小比小堆大1,那么我们要往小堆push数据,所以我们先把num放进大堆,再取大堆的堆顶放入小堆。

在这里插入图片描述

代码:

class MedianFinder {
public:priority_queue<int,vector<int>,greater<int>> _less_heap;//小堆priority_queue<int,vector<int>,less<int>> _greater_heap;//大堆MedianFinder() {}void addNum(int num) {if(_greater_heap.size() == 0){//第一次插入,直接入大堆_greater_heap.push(num); return; }//其他次插入,判断俩个堆的大小if(_greater_heap.size() == _less_heap.size()){//两个堆的大小相等,则放进大堆,不过需要先把num放进小堆,取小堆的堆顶放入大堆_less_heap.push(num);int top = _less_heap.top();_less_heap.pop();_greater_heap.push(top); }else {//两个堆大小不相等,则说明大堆多一个,把num放进大堆,取大堆的堆顶放入小堆,俩个堆的大小则平衡_greater_heap.push(num); int top = _greater_heap.top();_greater_heap.pop();_less_heap.push(top);}}double findMedian() {//如果俩个堆大小相等,返回堆顶和 /2 ,反之返回大堆堆顶if(_less_heap.size() == _greater_heap.size())return (_less_heap.top() + _greater_heap.top()) / 2.0; return _greater_heap.top();}
};

运行结果:

在这里插入图片描述

相关文章:

堆的OJ题

&#x1f525;&#x1f525; 欢迎来到小林的博客&#xff01;&#xff01;       &#x1f6f0;️博客主页&#xff1a;✈️林 子       &#x1f6f0;️博客专栏&#xff1a;✈️ 小林的算法笔记       &#x1f6f0;️社区 :✈️ 进步学堂       &am…...

物联网网关:连接设备与云端的桥梁

物联网网关作为连接设备与云端的桥梁&#xff0c;承担着采集数据、设备远程控制、协议转换、数据传输等重要任务。物联网网关是一种网络设备&#xff0c;它可以连接多个物联网设备&#xff0c;实现设备之间的数据传输和通信。物联网网关通常具有较高的网络带宽和处理能力&#…...

ChatGPT企业版来了,速度翻倍,无使用限制

美国时间8月28日&#xff0c;OpenAI宣布了自ChatGPT推出以来最重大的新闻&#xff1a;将推出ChatGPT企业版&#xff0c;企业版ChatGPT将直接对接GPT-4&#xff0c;提供无限制访问、高级数据分析功能、定制服务等服务&#xff0c;并支持处理更长文本输入的长上下文窗口。 OpenAI…...

opencv图像像素类型转换与归一化

文章目录 opencv图像像素类型转换与归一化1、为什么对图像像素类型转换与归一化2、在OpenCV中&#xff0c;convertTo() 和 normalize() 是两个常用的图像处理函数&#xff0c;用于图像像素类型转换和归一化&#xff1b;&#xff08;1&#xff09;convertTo() 函数用于将一个 cv…...

【自学开发之旅】Flask-前后端联调-异常标准化返回(六)

注册联调&#xff1a; 前端修改&#xff1a; 1.修改请求向后端的url地址 文件&#xff1a;env.development修改成VITE_API_TARGET_URL http://127.0.0.1:9000/v1 登录&#xff1a;token验证 校验forms/user.py from werkzeug.security import check_password_hash# 登录校验…...

springcloud3 分布式事务解决方案seata之XA模式4

一 seata的模式 1.1 seata的几种模式比较 Seata基于上述架构提供了四种不同的分布式事务解决方案&#xff1a; XA模式&#xff1a;强一致性分阶段事务模式&#xff0c;牺牲了一定的可用性&#xff0c;无业务侵入 TCC模式&#xff1a;最终一致的分阶段事务模式&#xff0c;有…...

编译ctk源码

目录 前景介绍 下载The Common Toolkit (CTK) cmake-gui编译 vs2019生成 debug版本 release版本 前景介绍 CTK&#xff08;Common Toolkit&#xff09;是一个用于医学图像处理和可视化应用程序开发的工具集&#xff0c;具有以下特点&#xff1a; 基于开源和跨平台的Qt框…...

前后端分离的低代码快速开发框架

低代码开发正逐渐成为企业创新的关键工具。通过提高开发效率、降低成本、增强灵活性以及满足不同用户需求&#xff0c;低代码开发使企业能够快速响应市场需求&#xff0c;提供创新解决方案。选择合适的低代码平台&#xff0c;小成本组建一个专属于你的应用。 项目简介 这是一个…...

【Java 基础篇】Java同步代码块解决数据安全

多线程编程是现代应用程序开发中的常见需求&#xff0c;它可以提高程序的性能和响应能力。然而&#xff0c;多线程编程也带来了一个严重的问题&#xff1a;数据安全。在多线程环境下&#xff0c;多个线程同时访问和修改共享的数据可能导致数据不一致或损坏。为了解决这个问题&a…...

亿纬锦能项目总结

项目名称&#xff1a;亿纬锦能 项目链接&#xff1a;https://www.evebattery.com 项目概况: 此项目用到了 wow.js/slick.js/swiper-bundle.min.js/animate.js/appear.js/fullpage.js以及 slick.css/animate.css/fullpage.css/swiper-bundle.min.css/viewer.css 本项目是一种…...

简明 SQL 组合查询指南:掌握 UNION 实现数据筛选

在SQL中&#xff0c;组合查询是一种将多个SELECT查询结果合并的操作&#xff0c;通常使用UNION和UNION ALL两种方式。 UNION 用于合并多个查询结果集&#xff0c;同时去除重复的行&#xff0c;即只保留一份相同的数据。UNION ALL 也用于合并多个查询结果集&#xff0c;但不去除…...

【springMvc】自定义注解的使用方式

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《Spring与Mybatis集成整合》 ⛺️ 生活的理想&#xff0c;为了不断更新自己 ! 1.前言 1.1.什么是注解 Annontation是Java5开始引入的新特征&#xff0c;中文名称叫注解。 它提供了一种安全…...

求二维子数组的和(剖析)

文章目录 &#x1f412;个人主页&#x1f3c5;JavaSE系列专栏&#x1f4d6;前言&#xff1a;本篇剖析一下二维子数组求和规则&#xff1a; &#x1f412;个人主页 &#x1f3c5;JavaSE系列专栏 &#x1f4d6;前言&#xff1a;本篇剖析一下二维子数组求和 规则&#xff1a; 这…...

无(低)代码开发思路介绍

无代码或者低代码开发的思路,是通过非编程代码,而是基于页面拖拉拽的方式来实现创建web应用的功能。 作为程序员我们知道私有云公有云已经实现了基础设施的web方式管理。DEVOPS把代码发布,管理也实现了web方式管理。那么我们很容易能够想到,只要把拖拉拽出来的项目自动化部…...

代码随想录刷题 Day14

144.二叉树的前序遍历(opens new window) 要注意下创建函数参数传递不是很理解 class Solution { public:void tranversal(TreeNode* s, vector<int> &b) {if (s NULL) {return;}b.push_back(s->val);tranversal(s->left, b);tranversal(s->right, b);}v…...

二分类问题的解决利器:逻辑回归算法详解(一)

文章目录 &#x1f34b;引言&#x1f34b;逻辑回归的原理&#x1f34b;逻辑回归的应用场景&#x1f34b;逻辑回归的实现 &#x1f34b;引言 逻辑回归是机器学习领域中一种重要的分类算法&#xff0c;它常用于解决二分类问题。无论是垃圾邮件过滤、疾病诊断还是客户流失预测&…...

docker alpine镜像中遇到 not found

1.问题&#xff1a; docker alpine镜像中遇到 sh: xxx: not found 例如 # monerod //注&#xff1a;此可执行文件已放到/usr/local/bin/ sh: monerod: not found2.原因 由于alpine镜像使用的是musl libc而不是gnu libc&#xff0c;/lib64/ 是不存在的。但他们是兼容的&…...

python的多线程多进程与多协程

python的多线程是假多线程&#xff0c;本质是交叉串行&#xff0c;并不是严格意义上的并行&#xff0c;或者可以这样说&#xff0c;不管怎么来python的多线程在同一时间有且只有一个线程在执行(举个例子&#xff0c;n个人抢一个座位&#xff0c;但是座位就这一个&#xff0c;不…...

一文介绍使用 JIT 认证后实时同步用户更加优雅

首先本次说的 JIT 指的是 Just In Time &#xff0c;可以理解为及时录入&#xff0c;一般用在什么样的场景呢&#xff1f; 还记的上次我们说过关于第三方组织结构同步的功能实现&#xff0c;主要目的是将第三方源数据同步到内部平台中来&#xff0c;方便做管控和处理 此处的管…...

搞定“项目八怪”,你就是管理高手!

大家好&#xff0c;我是老原。 玛丽.弗列特说&#xff1a;“权力已经逐渐被视为一个群体的组合能力。我们通过有效联系获取力量。” 有效联系也就是指的沟通&#xff0c;这个部分占据我们项目经理工作内容的80%&#xff0c;可见沟通在项目管理中的重要性。 项目经理的沟通包…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...