【ComfyUI】安装 之 window版
文章目录
- 序言
- 步骤
- 下载comfyUI
- 配置大模型和vae
- 下载依赖组件
- 启动
- 生成图片
- 解决办法
序言
由于stable diffusion web ui无法做到对流程进行控制,只是点击个生成按钮后,一切都交给AI来处理。但是用于生产生活是需要精细化对各个流程都要进行控制的。
故也就有个今天的猪脚:Comfyui
步骤
- 下载comfyui项目
- 配置大模型和vae
- 下载依赖组件
- 启动
下载comfyUI
官网地址:https://github.com/comfyanonymous/ComfyUI
将项目下载到自己喜欢的目录下,下面是我的:
yutao@yutao MINGW64 /e/openai/project
$ git clone https://github.com/comfyanonymous/ComfyUI.git
配置大模型和vae
- 在
ComfyUI\models\checkpoints中放大模型文件 - 在
ComfyUI\models\vae中放vae文件。
但是,我们学stable diffusion基本都是从stable diffusion webui开始的,所以我们其实不需要再额外的下载,checkpoint和vae,而是共用他们。
ComfyUI的作者提供了配置方法:
- 修改
extra_model_paths.yaml.example文件重命名为:extra_model_paths.yaml - 打开文件,将里面的base_path进行修改:
以下是我的stable-diffusion-webui的路径
a111:base_path: E:\openai\project\stable-diffusion-webui
保存退出。
下载依赖组件
在ComfyUI中调出命令行(将文件夹路径上敲cmd,回车即可)中执行:
E:\openai\project\ComfyUI>pip install -r requirements.txt
就会开始下载所需的依赖组件。
启动
命令:python main.py
E:\openai\project\ComfyUI>python main.py

浏览器访问地址:http://127.0.0.1:8188
最左边,因为我之前玩stable diffusion时候已经下载好了guofeng3大模型。所以load checkpoint 里面我显示的是guofeng3.
大模型,我下载的是guofeng3。
放到models/checkpoints文件夹里,例如:E:\openai\project\ComfyUI\models\checkpoints。

生成图片
因为默认参数就可以生成一个花瓶,点击右上角的Queue Prompt。

但是我的电脑总是不是那么顺利。
详细描述文章:【ComfyUI】RuntimeError: CUDA error: operation not supported
报了如下错误:
got prompt
model_type EPS
adm 0
making attention of type 'vanilla-pytorch' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla-pytorch' with 512 in_channels
missing {'cond_stage_model.text_projection', 'cond_stage_model.logit_scale'}
left over keys: dict_keys(['cond_stage_model.transformer.text_model.embeddings.position_ids', 'model_ema.decay', 'model_ema.num_updates'])
loading new
loading new
loading in lowvram mode 1842.6899042129517
!!! Exception during processing !!!
Traceback (most recent call last):File "E:\openai\project\ComfyUI\execution.py", line 152, in recursive_executeoutput_data, output_ui = get_output_data(obj, input_data_all)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\execution.py", line 82, in get_output_datareturn_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\execution.py", line 75, in map_node_over_listresults.append(getattr(obj, func)(**slice_dict(input_data_all, i)))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\nodes.py", line 1236, in samplereturn common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\nodes.py", line 1206, in common_ksamplersamples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\comfy\sample.py", line 81, in samplecomfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory)File "E:\openai\project\ComfyUI\comfy\model_management.py", line 394, in load_models_gpucur_loaded_model = loaded_model.model_load(lowvram_model_memory)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\comfy\model_management.py", line 288, in model_loadaccelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)File "D:\Program Files\Python\Lib\site-packages\accelerate\big_modeling.py", line 391, in dispatch_modelattach_align_device_hook_on_blocks(File "D:\Program Files\Python\Lib\site-packages\accelerate\hooks.py", line 532, in attach_align_device_hook_on_blocksadd_hook_to_module(module, hook)File "D:\Program Files\Python\Lib\site-packages\accelerate\hooks.py", line 155, in add_hook_to_modulemodule = hook.init_hook(module)^^^^^^^^^^^^^^^^^^^^^^File "D:\Program Files\Python\Lib\site-packages\accelerate\hooks.py", line 253, in init_hookset_module_tensor_to_device(module, name, self.execution_device)File "D:\Program Files\Python\Lib\site-packages\accelerate\utils\modeling.py", line 307, in set_module_tensor_to_devicenew_value = old_value.to(device)^^^^^^^^^^^^^^^^^^^^
RuntimeError: CUDA error: operation not supported
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
其实就是说,我当前电脑的GPU或硬件,并不支持当前CUDA中的某些操作。
解决办法
官方提供了两种解决策略。
方式一:黑名单策略


加完后,再重启。发现还是不行。
方式二:启动时添加–disable-cuda-malloc
# 注意--disable-cuda-malloc
E:\openai\project\ComfyUI>python main.py --disable-cuda-malloc
最后,通过方式二,得以解决。
参考地址:
https://github.com/comfyanonymous/ComfyUI#manual-install-windows-linux
Stable Diffusion ComfyUI 入门感受
相关文章:
【ComfyUI】安装 之 window版
文章目录 序言步骤下载comfyUI配置大模型和vae下载依赖组件启动 生成图片解决办法 序言 由于stable diffusion web ui无法做到对流程进行控制,只是点击个生成按钮后,一切都交给AI来处理。但是用于生产生活是需要精细化对各个流程都要进行控制的。 故也…...
iMazing 2 .17.9最新官方中文版免费下载安装激活
iMazing 2 .17.9最新版是一款帮助用户管理IOS手机的应用程序,iMazing2最新版能力远超iTunes提供的终极的iOS设备管理器。IMazing与你的iOS设备(iPhone、 iPad或iPod)相连,使用起来非常的方便。作为苹果指定的iOS设备同步工具。 mazing什么意思 iMazing…...
Postman应用——Pre-request Script和Test Script脚本介绍
文章目录 Pre-request Script所在位置CollectionFolderRequest Test Script所在位置CollectionFolderRequest Pre-request Script(前置脚本):可以使用在Collection、Folder和Request中,并在Request请求之前执行,可用于…...
vue2中年份季度选择器(需要安装element)
调用 <!--父组件调用--><QuarterCom v-model"quart" clearable default-current/> 组件代码 <template><div><span style"margin-right: 10px">{{ label }}</span><markstyle"position:fixed;top:0;bottom:0…...
QT day5
数据库完成登入注册 mainwindow.h #ifndef MAINWINDOW_H #define MAINWINDOW_H #include <QMainWindow> #include<QDebug> #include<QPushButton> #include<QLineEdit> #include<QLabel> #include <QMainWindow> #include<QMessageBo…...
设计模式Java实战
文章目录 一、前置1.1 目的1.2 面向对象1.3 接口和抽象类 二、七大设计原则2.1 单一职责2.2 接口隔离原则2.3 依赖倒转原则2.4 里氏替换原则2.5 开闭原则2.6 不要重复原则2.7 迪米特最少知道法则 三、23种设计模式3.1创建型:创建对象3.1.1 单例模式定义最佳实践场景…...
外国固定资产管理系统功能有哪些
很多公司都在寻找提高自己资产管理效益的方法。为了满足这一要求,国外的固定资产管理系统已经发展成多种形式。以下是国外一些常见的固定资产管理系统的特点:自动化和智能化:许多现代固定资产管理系统采用自动化和数字化技术,以简化流程,减少…...
Postman应用——控制台调试
当你在测试脚本中遇到错误或意外行为时,Postman控制台可以帮助你识别,通过将console.log调试语句与你的测试断言相结合,你可以检查http请求和响应的内容,以及变量之类的。 通常可以使用控制台日志来标记代码执行,有时…...
如何制作思维导图?
思维导图是一种非常有用的工具,可以被广泛应用于不同领域的人群。以下是一些常见的使用人群:学生、教育工作人员、各领域的专业人员,法律、商业、医学等等,创作者、艺术家、个人自我成长管理。 由此可见,思维导图可以做…...
【力扣每日一题】2023.9.21 收集树中金币
目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目给我们一棵树,不过这棵树不是普通的树,而是无向无根树。给我们一个二维数组表示节点之间的连接关系ÿ…...
Python与数据分析--每天绘制Matplotlib库实例图片3张-第1天
目录 1.实例1--Bar color demo 2.实例2--Bar Label Demo 3.实例3--Grouped bar chart with labels 1.实例1--Bar color demo import matplotlib.pyplot as plt # 支持中文 plt.rcParams[font.sans-serif] [SimHei] # 用来正常显示中文标签 plt.rcParams[axes.unicode_minus…...
pycharm 中package, directory, sources root, resources root的区别
【遇到的问题】 导入yolov5中有utils文件,自己的代码中也有utils文件,使得yolov5中的这部分引用出错了。 【解决方案】 单独建立detection文件夹,把检测相关的都放在这里,yolov5是github上拉取的源码,发现yolov5中fr…...
【谢希尔 计算机网络】第2章 物理层
目录 通信基础 基本概念 两个公式lim 奈氏准则 香农定理 奈氏准则 VS 香农定理 编码与调制 编辑 物理层下面的传输媒体 导引型传输媒体 1. 双绞线 2. 同轴电缆 3. 光缆 非导引型传输媒体 无线电微波通信 卫星通信 无线局域网使用的 ISM 频段 信道复用技术 …...
Eclipse工具使用技巧
1、常用快捷键 ctrlshifto 快速导包 CtrlSpace 内容助理 说明:内容助理。提供对方法,变量,参数,javadoc等得提示,应运在多种场合,总之需要提示的时候可先按此快捷键。注:避免输入法的切换设置与此设置冲突 CtrlShiftSpace 变量提示 Ctrl/ 添加/消除//注释 CtrlShift/ 添加…...
python LeetCode 刷题记录 94
题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 代码 递归 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.righ…...
滴滴可观测平台 Metrics 指标实时计算如何实现了又准又省?
在滴滴,可观测平台的 Metrics 数据有一些实时计算的需求,承载这些实时计算需求的是一套又一套的 Flink 任务。之所以会有多套 Flink 任务,是因为每个服务按照其业务观测需要不同的指标计算,也就对应了不同数据处理拓扑。我们尽力抽…...
每天几道Java面试题:IO流(第五天)
目录 第五幕 、第一场)街边 友情提醒 背面试题很枯燥,加入一些戏剧场景故事人物来加深记忆。PS:点击文章目录可直接跳转到文章指定位置。 第五幕 、 第一场)街边 【衣衫褴褛老者,保洁阿姨,面试者老王】 衣衫褴褛老…...
js/axios/umi-request 根据后端返回的二进制流下载文件
type ResponseType {data: Blob;headers: {content-disposition?: string;}; }; // 下载 (创建a标签) export const downloadBlob (response: ResponseType) > {const blob response.data; // 获取响应中的 Blob 数据const contentDisposition response.headers[conten…...
软件评测师之流水线
目录 一.概念二.周期三.执行时间的计算 一.概念 程序在执行时多条指令可以层叠并行的技术。 二.周期 取指→分析→执行 指令执行的各个阶段里面,执行时间最长的为流水线的周期。 三.执行时间的计算 n条指令执行的总时间流水线计算公式:单条指令所需…...
Linux系统编程——网络编程的学习
Linux系统编程学习相关博文 Linux系统编程——文件编程的学习Linux系统编程——进程的学习Linux系统编程——进程间通信的学习Linux系统编程——线程的学习 Linux系统编程——网络编程的学习 一、概述1. TCP/UDP2. 端口号3. 字节序4. Sockt服务器和客户端的开发步骤1. 服务器2…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
