当前位置: 首页 > news >正文

基于YOLOv8模型的条形码二维码检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的条形码二维码检测系统可用于日常生活中检测与定位条形码与二维码目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种条形码二维码目标检测模型,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的条形码二维码数据集手动标注了条形码二维码这两个类别,数据集总计2999张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的条形码二维码检测识别数据集包含训练集1749张图片,验证集500张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示
在这里插入图片描述

相关文章:

基于YOLOv8模型的条形码二维码检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的条形码二维码检测系统可用于日常生活中检测与定位条形码与二维码目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测…...

2023/09/22 制作demo期间心得

A*的估价函数:例如A->C,会计算A到B的距离B到C的距离作为成本,雕刻不会导致全局路线的重新计算,凸多边形是一个内部为凸集的简单多边形。 简单多边形的下列性质与其凸性等价:1、所有内角小于等于180度。 2、任意两个…...

高阶数据结构——图

图 图的基本概念 图的基本概念 图是由顶点集合和边的集合组成的一种数据结构&#xff0c;记作 G ( V , E ) G(V, E)G(V,E) 。 有向图和无向图&#xff1a; 在有向图中&#xff0c;顶点对 < x , y >是有序的&#xff0c;顶点对 < x , y > 称为顶点 x 到顶点 y 的…...

高性能AC算法多关键词匹配文本功能Java实现

直接上测试结果&#xff1a; 1000000数据集。 1000000关键词&#xff08;匹配词&#xff09; 装载消耗时间&#xff1a;20869 毫秒 匹配消耗时间&#xff1a;6599 毫秒 代码和测试案例&#xff1a; package com.baian.tggroupmessagematchkeyword.ac;import lombok.Data;im…...

如何在没有第三方.NET库源码的情况,调试第三库代码?

大家好&#xff0c;我是沙漠尽头的狼。 本方首发于Dotnet9&#xff0c;介绍使用dnSpy调试第三方.NET库源码&#xff0c;行文目录&#xff1a; 安装dnSpy编写示例程序调试示例程序调试.NET库原生方法总结 1. 安装dnSpy dnSpy是一款功能强大的.NET程序反编译工具&#xff0c;…...

仿互站资源商城平台系统源码多款应用模版

首先安装好环境&#xff0c;推荐用Linux宝塔 请示&#xff1a;安装前请先别开防火墙&#xff0c;和跨站篡改 第1步上传程序到服务器&#xff0c; 第2步修改数据库文件&#xff0c;config/config.php 第3步&#xff0c;导入数据&#xff0c;根目录的数据库文件夹里面 数据.s…...

华为云云耀云服务器L实例评测 | L实例性能测试实践

&#x1f996;我是Sam9029&#xff0c;一个前端 Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-JS学习,CSS学习,Vue-2领域博主 **&#x1f431;‍&#x1f409;&#x1f431;‍&#x1f409;恭喜你&#xff0c;若此文你认为写的不错&#xff0c;不要吝啬你的赞扬&#xff0c;求…...

VR赋能红色教育,让爱国主义精神永放光彩

昨天的918防空警报长鸣&#xff0c;人们默哀&#xff0c;可见爱国主义精神长存。为了贯彻落实“把红色资源利用好、红色传统发扬好、红色基因传承好”的指示精神&#xff0c;许多红色景点开始引入VR全景展示技术&#xff0c;为游客提供全方位720度无死角的景区展示体验。 VR全…...

计算机视觉与深度学习-卷积神经网络-卷积图像去噪边缘提取-图像去噪 [北邮鲁鹏]

目录标题 参考学习链接图像噪声噪声分类椒盐噪声脉冲噪声对椒盐噪声&脉冲噪声去噪使用高斯卷积核中值滤波器 高斯噪声减少高斯噪声 参考学习链接 计算机视觉与深度学习-04-图像去噪&卷积-北邮鲁鹏老师课程笔记 图像噪声 噪声点&#xff0c;其实在视觉上看上去让人感…...

三行代码实现图像画质修复,图片清晰度修复,清晰度提升python

核心代码 # 原始文件 enhancer ImageEnhance.Sharpness(Image.open(文件路径.png)) # 增强图片 img_enhanced enhancer.enhance(增强系数float) # 输出目标文件 img_enhanced.save(文件名.png)注意&#xff0c;输入输出文件格式必须一致 所需依赖 # 文件选择框&#xff0c…...

企业电子招投标采购系统源码之电子招投标的组成

功能模块&#xff1a; 待办消息&#xff0c;招标公告&#xff0c;中标公告&#xff0c;信息发布 描述&#xff1a; 全过程数字化采购管理&#xff0c;打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力&#xff0c;为外部供…...

【MySQL】 MySQL的增删改查(进阶)--贰

文章目录 &#x1f6eb;新增&#x1f6ec;查询&#x1f334;聚合查询&#x1f6a9;聚合函数&#x1f388;GROUP BY子句&#x1f4cc;HAVING &#x1f38b;联合查询⚾内连接⚽外连接&#x1f9ed;自连接&#x1f3c0;子查询&#x1f3a1;合并查询 &#x1f3a8;MySQL的增删改查(…...

第七章 查找

一、树形查找-二叉排序树和红黑树 二叉排序树 // 二叉排序树节点 typedef struct BSTNode{ElemType key;struct BSTNode *lchild, *rchild; } BSTNode, *BSTree;五叉查找树 // 5叉排序树的节点定义 struct Node{ElemType keys[4]; // 5叉查找树一个节点最多4个关键字struct…...

openfeign返回消息报错.UnknownContentTypeException

1. springcloud项目使用openfeign报错 org.springframework.web.client.UnknownContentTypeException: Could not extract response: no suitable HttpMessageConverter found for response type [com.yl.base.Result<java.util.List<com.yl.entity.LabelConfig>>…...

[Linux入门]---Linux项目自动化构建工具-make/Makefile

目录 1.背景2.make指令输入make默认为Makefile文件第一条指令执行Makefile文件对gcc指令特殊处理及原理特殊符号 3.总结 1.背景 会不会写makefile&#xff0c;从一个侧面说明了一个人是否具备完成大型工程的能力一个工程中的源文件不计数&#xff0c;其按类型、功能、模块分别放…...

[Python进阶] 程序打包之Pyinstaller参数介绍

5.4 Pyinstaller参数介绍 5.4.1 选项参数 参数名 说明 -h、–help 查看Pyinstaller所有命令的用法和帮助 -v、–version 查看当前Pyinstaller版本 –distpath DIR 设置dist位置&#xff0c;默认当前目录 –workpath WORKPATH 设置build位置&#xff0c;默认当前目录 -y、–no…...

Python中如何判断列表中的元素,是否在一段文本中??

#我的Python教程 #官方微信公众号&#xff1a;wdPython1.要判断列表中的每个元素是否在一段文本中&#xff0c;可以使用Python中的字符串的 in 运算符来实现。以下是一个示例代码&#xff1a; text "Hello, how are you today?" word_list ["Hello", &…...

spark Structured报错解决

报错&#xff0c;不想看原因的直接去解决方案试试 Exception in thread "main" java.lang.IllegalArgumentException: Pathname /C:/Users/Administrator/AppData/Local/Temp/1/temporary-611514af-8dc5-4b20-9237-e5f2d21fdf88/metadata from hdfs://master:8020/C…...

Matter 协议系列:发现

Commissionable 发现 Commissionable 发现发生在投入使用&#xff08;未绑定&#xff09;之前&#xff0c;指的是发现和识别Commissionable 节点的过程。有三种方法可以通过这些方法中的任何一种来 广播Commissionable 的节点&#xff1a; 蓝牙低功耗&#xff08;BLE&#xff…...

Oracle 12c Docker镜像配置SSL

一、Docker运行Oracle 12c服务 a.拉取镜像 docker pull truevoly/oracle-12cb.运行 docker run -d -p 1521:1521 -p 2484:2484 -v /data/oracle/:/opt/oracle --name oracle_12c truevoly/oracle-12cc.查看日志 docker logs -f oracle_12cd.出现如下信息&#xff0c;则启动…...

版本控制系统git:一文了解git,以及它在生活中的应用,网站维护git代码,图导,自动化部署代码

目录 1.Git是什么 2.git在生活中的应用 2.1git自动化部署代码 3.网站维护git代码 3.1如何在Git代码托管平台等上创建一个仓库 3.2相关文章 4.ruby实现基础git 4.1.Git add 4.2 Git commit 4.3 Git log 1.Git是什么 Git是一个版本控制系统&#xff0c;它可以追踪文件的…...

uqrcode+uni-app 微信小程序生成二维码

使用微信小程序需要弹出动态二维码的需求&#xff0c;从插件市场选了一个下载次数较多的组件引入到项目中uqrcode&#xff0c;使用步骤如下&#xff1a; 1、从插件市场下载 插件地址&#xff1a;https://ext.dcloud.net.cn/plugin?id1287&#xff0c;若你是跟我一样是用uni-…...

从零开始的 MyBatis 拦截器之旅:实战经验分享

文章目录 MyBatis拦截器可以做什么&#xff1f;Mybatis核心对象介绍四大核心对象如何实现&#xff1f;接口讲解Interceptor接口intercept方法plugin方法setProperties 完整SQL打印拦截器实战拦截器实现拦截器注册 MyBatis拦截器可以做什么&#xff1f; MyBatis拦截器是MyBatis…...

网络编程day05(IO多路复用)

今日任务&#xff1a; TCP多路复用的客户端、服务端&#xff1a; 服务端代码&#xff1a; #include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <unistd.h> …...

人声分离网站,帮你快速提取视频中的人声和背景音乐

今天给大家带来一个可以分离人声的网站——音分轨&#xff0c;他运用人工智能算法可以将音频中的人声部分和音乐部分分离&#xff0c;使我们的视频制作过程可以更方便。 我们点击右下角“选择文件”上传一个音频&#xff0c;上传好音频后&#xff0c;人工智能就开始处理我们上传…...

计算机网络常见问题

1.谈一谈对OSI七层模型和TCP/IP四层模型的理解&#xff1f; 1.1.为什么要分层&#xff1f; 在计算机中网络是个复杂的系统&#xff0c;不同的网络与网络之间由于协议&#xff0c;设备&#xff0c;软件等各种原因在协调和通讯时容易产生各种各样的问题。例如&#xff1a;各物流…...

上PICO,沉浸式观看亚运直播,参与跨国界游戏竞技

备受瞩目的杭州第19届亚运会&#xff0c;将于9月23日正式开幕。据悉&#xff0c;这也是有史以来项目最多的一届亚运会&#xff0c;除部分传统奥运项目外&#xff0c;还包含武术、藤球、板球、克柔术、柔术等亚洲特色项目&#xff0c;以及霹雳舞、电子竞技等深受年轻人喜爱的新兴…...

无重复字符的最长子串 - 力扣(LeetCode)

3. 无重复字符的最长子串 - 力扣&#xff08;LeetCode&#xff09; 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc"&#xff0c;所以其长…...

企业行政许可的种类有哪些?

从行政许可的性质、功能和适用条件的角度来说&#xff0c;大体可以划分为五类&#xff1a;普通许可、特许、认可、核准、登记。 1.普通许可 普通许可是一种允许符合特定条件的相对方行使某种权利的行为。在许多情况下&#xff0c;需要普通许可的活动都与国家安全、公共安全息…...

Flink--4、DateStream API(执行环境、源算子、基本转换算子)

星光下的赶路人star的个人主页 注意力的集中&#xff0c;意象的孤立绝缘&#xff0c;便是美感的态度的最大特点 文章目录 1、DataStream API1.1 执行环境&#xff08;Execution Environment&#xff09;1.1.1 创建执行环境 1.2 执行模式&#xff08;Execution Mode&#xff09;…...

淘宝客必须做网站吗/百度官方网

- 试过重装MSVCR100.dll (无效而且由于版本不对引起了其他错误: 无法定位程序输入点1_NonReentrantPPLLockHolderdetailsConcurrencyQAEXZ与动态链接库msvcr100.dll上)&#xff0c;官方MSVCR win7&#xff0c;XP的dll下载地址&#xff1a;http://www.microsoft.com/zh-cn/down…...

广东网站设计的公司/推广引流方法有哪些推广方法

今天为大家带来的内容比较实用&#xff0c;主要还是针对零基础的小伙伴&#xff0c;话不多说&#xff0c;直接开始码&#xff08;本文内容用的是第一人称&#xff09; 平常我都是直接执行 pip install 安装的第三方库&#xff0c;很多教程也是这么介绍的&#xff0c;一直以来我…...

网站公司怎么做运营/缅甸最新新闻

2019独角兽企业重金招聘Python工程师标准>>> db2还是用dbvis 执行存储过程比较适合 很早就想学存储过程了&#xff0c;之前面试时都是问会不会存储过程&#xff0c;然而我只能摇摇头&#xff0c;看了大量博客&#xff0c;刚好这次可以用存储过程 &#xff0c;会更方…...

建设门户网站多少钱/毛戈平化妆培训学校官网

点击上方蓝色字体&#xff0c;选择“标星公众号”优质文章&#xff0c;第一时间送达关注公众号后台回复pay或mall获取实战项目资料视频作者&#xff1a;糊糊糊糊糊了www.cnblogs.com/rynxiao/p/13825438.html分不清轮询、长轮询&#xff1f;不知道什么时候该用websocket还是SSE…...

重庆建工网/seo学校培训班

最近360、金山、可牛、遨游可谓打得一团火&#xff0c;毕竟在这么大竞争市场里面&#xff0c;分一块蛋糕可不是一件容易的事情&#xff0c;当中涉及到利益关系复杂&#xff0c;矛盾不断升级&#xff0c;同行里面究竟谁破坏了规矩&#xff0c;我们简单做一个陈述。 首先我们出场…...

wordpress做小程序/搜索引擎关键词排名优化

NEW关注Tech逆向思维视频号最新视频→【最骇人的5起自动驾驶“杀人”事故】出品&#xff5c;脑极体文&#xff5c;燕良最影响人类生命质量的疾病排在首位的就是癌症了。古人谈虎色变&#xff0c;今人谈癌色变。癌症这类疾病早已经不是年老体弱的人专属&#xff0c;而是越来越趋…...