当前位置: 首页 > news >正文

Windows安装Docker Desktop并配置镜像、修改内存占用大小

启用Hyper-V

Win + S 搜索控制面板
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

安装WSL2

第一种方法(推荐)

以管理员运行命令提示符,然后重启Docker Desktop

wsl --update
wsl --set-default-version 2

在这里插入图片描述
在这里插入图片描述

第2种方法去微软官网下载WSL2并安装

《微软官网下载WSL2》
在这里插入图片描述

配置WSL2最大内存占用大小

在C:/Users/UserName/.wslconfig创建一个文件,配置如下所示。
processors设置WSL2使用的CPU内核数量
memory设置WSL2的内存大小
swap设置WSL2的虚拟内存大小,即如果memory用完了,则使用swap。swap的速度取决于你磁盘速度,如果你的事SSD固态硬盘,则速度会比机械硬盘的速度快。

[wsl2]
processors=4
memory=2GB
swap=1GB

不知道processors设置多少的,直接看任务管理器的CPU内核数
memory根据自己电脑的承受能力设置,内存大的可以设置大点。如:8G设置2G,16G设置3G,32G设置4G。
在这里插入图片描述
重启电脑使WSL2配置生效

下载Docker Desktop

《官网下载Docker Desktop》
在这里插入图片描述

安装Docker Desktop

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

配置镜像

在这里插入图片描述
修改image存储位置
在这里插入图片描述
配置镜像
在这里插入图片描述

{"registry-mirrors": ["https://registry.docker-cn.com","http://hub-mirror.c.163.com","https://docker.mirrors.ustc.edu.cn"],"insecure-registries": [],"debug": false,"experimental": false,"features": {"buildkit": true},"builder": {"gc": {"enabled": true,"defaultKeepStorage": "40GB"}}
}

在这里插入图片描述
重启Docker Desktop
在这里插入图片描述

相关文章:

Windows安装Docker Desktop并配置镜像、修改内存占用大小

启用Hyper-V Win S 搜索控制面板 安装WSL2 第一种方法(推荐) 以管理员运行命令提示符,然后重启Docker Desktop wsl --updatewsl --set-default-version 2第2种方法去微软官网下载WSL2并安装 《微软官网下载WSL2》 配置WSL2最大内…...

Zipping

Zipping 信息收集端口扫描目录扫描webbanner信息收集 漏洞利用空字节绕过---->失败sqlI-preg_match bypass反弹shell 稳定维持 提权-共享库漏洞 参考:https://rouvin.gitbook.io/ibreakstuff/writeups/htb-season-2/zipping#sudo-privileges-greater-than-stock-…...

pytorch学习---实现线性回归初体验

假设我们的基础模型就是y wx b,其中w和b均为参数,我们使用y 3x0.8来构造数据x、y,所以最后通过模型应该能够得出w和b应该分别接近3和0.8。 步骤如下: 准备数据计算预测值计算损失,把参数的梯度置为0,进行反向传播…...

别再乱写git commit了

B站|公众号:啥都会一点的研究生 写在前面 在很长的一段时间中,使用git commit都是随心所欲,log肥肠简洁,随着代码的迭代,当时有多偷懒,返过头查看git日志就有多懊悔,就和写代码不写doc string…...

八大排序(一)冒泡排序,选择排序,插入排序,希尔排序

一、冒泡排序 冒泡排序的原理是:从左到右,相邻元素进行比较。每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右边冒出来。 以从小到大排序为例,第一轮比较后,所有数中最大的那个数就会浮…...

泊松分布简要介绍

泊松分布是一种常见的离散概率分布,它用于描述某个时间段或区域内随机事件发生的次数。它得名于法国数学家西蒙丹尼泊松。 泊松分布的概率质量函数表示某个时间段或区域内事件发生次数的概率。如果随机变量 X 服从泊松分布,记作 X ~ Poisson(λ)&#x…...

C语言每日一题(10):无人生还

文章主题:无人生还🔥所属专栏:C语言每日一题📗作者简介:每天不定时更新C语言的小白一枚,记录分享自己每天的所思所想😄🎶个人主页:[₽]的个人主页🏄&#x1f…...

VSCode开发go手记

断点调试: 安装delve(windows): go get -u github.com/go-delve/delve/cmd/dlv 设置 launch.json 配置文件: ctrlshiftp 输入 Debug: Open launch.json 打开 launch.json 文件,如果第一次打开,会新建一…...

怎么选择AI伪原创工具-AI伪原创工具有哪些

在数字时代,创作和发布内容已经成为了一种不可或缺的活动。不论您是个人博主、企业家还是网站管理员,都会面临一个共同的挑战:如何在互联网上脱颖而出,吸引更多的读者和访客。而正是在这个背景下,AI伪原创工具逐渐崭露…...

【块状链表C++】文本编辑器(指针中 引用 的使用)

》》》算法竞赛 /*** file * author jUicE_g2R(qq:3406291309)————彬(bin-必应)* 一个某双流一大学通信与信息专业大二在读 * * brief 一直在竞赛算法学习的路上* * copyright 2023.9* COPYRIGHT 原创技术笔记:转载…...

echarts的Y轴设置为整数

场景:使用echarts,设置Y轴为整数。通过判断Y轴的数值为整数才显示即可 yAxis: [{name: ,type: value,min: 0, // 最小值// max: 200, // 最大值// splitNumber: 5, // 坐标轴的分割段数// interval: 100 / 5, // 强制设置坐标轴分割间隔度(取本Y轴的最大…...

恢复删除文件?不得不掌握的4个方法!

“删除了的文件还可以恢复吗?有个文件我本来以为不重要了,就把它删除了,没想到现在还需要用到!这可怎么办?有没有办法找回来呢?” 重要的文件一旦丢失或误删可能都会对我们的工作和学习造成比较大的影响。怎…...

GitLab CI/CD:.gitlab-ci.yml 文件常用参数小结

文章目录 一、.gitlab-ci.yml 文件作用二、一个简单的.gitlab-ci.yml 文件示例参考 一、.gitlab-ci.yml 文件作用 可以定义跑CI时想要运行的命令或脚本 可以定义job之间的依赖和缓存 可以执行程序部署并定义部署位置 可以定义想要包含的其他配置文件和模版 二、一个简单的.gi…...

MySQL学习笔记9

MySQL数据表中的数据类型: 在考虑数据类型、长度、标度和精度时,一定要仔细地进行短期和长远的规划,另外,公司制度和希望用户用什么方式访问数据也是要考虑的因素。开发人员应该了解数据的本质,以及数据在数据库里是如…...

从零学习开发一个RISC-V操作系统(三)丨嵌入式操作系统开发的常用概念和工具

本篇文章的内容 一、嵌入式操作习系统开发的常用概念和工具1.1 本地编译和交叉编译1.2 调试器GDB(The GNU Project Debugger)1.3 QEMU模拟器1.4 项目构造工具Make 本系列是博主参考B站课程学习开发一个RISC-V的操作系统的学习笔记,计划从RISC…...

小米机型解锁bl 跳“168小时”限制 操作步骤分析

写到前面的安全提示 了解解锁bl后的风险: 解锁设备后将允许修改系统重要组件,并有可能在一定程度上导致设备受损;解锁后设备安全性将失去保证,易受恶意软件攻击,从而导致个人隐私数据泄露;解锁后部分对系…...

基础练习 回文数

问题描述 1221是一个非常特殊的数&#xff0c;它从左边读和从右边读是一样的&#xff0c;编程求所有这样的四位十进制数。 输出格式 按从小到大的顺序输出满足条件的四位十进制数。 solution1 #include <stdio.h> int main(){int n 1000, n1, n2, n3, n4;while(n &…...

解决Spring Boot 2.7.16 在服务器显示启动成功无法访问问题:从本地到服务器的部署坑

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

洛谷P5661:公交换乘 ← CSP-J 2019 复赛第2题

【题目来源】https://www.luogu.com.cn/problem/P5661https://www.acwing.com/problem/content/1164/【题目描述】 著名旅游城市 B 市为了鼓励大家采用公共交通方式出行&#xff0c;推出了一种地铁换乘公交车的优惠方案&#xff1a; 1.在搭乘一次地铁后可以获得一张优惠票&…...

mysql优化之索引

索引官方定义&#xff1a;索引是帮助mysql高效获取数据的数据结构。 索引的目的在于提高查询效率&#xff0c;可以类比字典。 可以简单理解为&#xff1a;排好序的快速查找数据结构 在数据之外&#xff0c;数据库系统还维护着满足特定查找算法的数据结构&#xff0c;这种数据…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...