当前位置: 首页 > news >正文

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据...

全文链接:http://tecdat.cn/?p=24456

如果你正在进行统计分析:想要加一些先验信息,最终你想要的是预测。所以你决定使用贝叶斯点击文末“阅读原文”获取完整代码数据)。

相关视频


但是,你没有共轭先验。你可能会花费很长时间编写 Metropolis-Hastings 代码,优化接受率和提议分布,或者你可以使用 RStan。

Hamiltonian Monte Carlo(HMC)

HMC 是一种为 MH 算法生成提议分布的方法,该提议分布被接受的概率很高。具体算法过程请查看参考文献。
打个比方:
给粒子一些动量。
它在滑冰场周围滑行,大部分时间都在密度高的地方。
拍摄这条轨迹的快照为后验分布提供了一个建议样本。
然后我们使用 Metropolis-Hastings 进行校正。

NUTS采样器(No-U-turn Sampler)

HMC,像RWMH一样,需要对步骤的数量和大小进行一些调整。
No-U-Turn Sampler "或NUTs(Hoffman和Gelman(2014)),对这些进行了自适应的优化。
NUTS建立了一组可能的候选点,并在轨迹开始自相矛盾时立即停止。

Stan 的优点

可以产生高维度的提议,这些提议被接受的概率很高,而不需要花时间进行调整。
有内置的诊断程序来分析MCMC的输出。
在C++中构建,所以运行迅速,输出到R。

示例

如何使用 LASSO 构建贝叶斯线性回归模型。

构建 Stan 模型

数据:n、p、Y、X 先验参数,超参数
参数:7d9b67d77a361c6a703778f358191b48.png
模型:高斯似然、拉普拉斯和伽玛先验。
输出:后验样本,后验预测样本。

数据

int<lwer=0> n;
vectr\[n\] y;
rel<loer=0> a;

参数

vetor\[p+1\] beta;
real<lowr=0> siga;

转换后的参数(可选)

vectr\[n\] liped;
lnpred = X*bea;

模型

bta ~ dolexneial(0,w);
siga ~ gama(a,b);

或没有矢量化,

for(i in 1:n){
y\[i\]~noral(X\[i,\]*beta,siga);
}

生成的数量(可选)

vecor\[n\] yprict;
for(i in 1:n){
prdit\[i\] = nrmlrng(lnprd\[i\],siga);

对后验样本的每一个元素都要评估一次这个代码。

职业声望数据集

这里我们使用职业声望数据集,它有以下变量

教育:职业在职者的平均教育程度,年。

收入:在职者的平均收入,元。

女性:在职者中女性的百分比。

威望:Pineo-Porter的职业声望得分,来自一项社会调查。

普查:人口普查的职业代码。

类型:职业的类型

bc: 蓝领
prof: 专业、管理和技术
wc: 白领

 在R中运行

library(rstan)
stan(file="byLASO",iter=50000)

在3.5秒内运行25000次预热和25000次采样。
第一次编译c++代码,所以可能需要更长的时间。

绘制后验分布图

par(mrow=c(1,2))
plot(denty(prs$bea)

79e5307e81563df4ed4389ee24140557.png

预测分布

plot(density)

07644d6e78284208a8bf11bddfce950d.png


点击标题查阅往期内容

cc6daaa29903df9e53ac34f8bc2db2d7.png

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断

outside_default.png

左右滑动查看更多

outside_default.png

01

1a579824670743f682c71f665e41471c.png

02

02a52b25a3f2f6f2cce817d29561d308.png

03

8982d4cd5e2d16b60048e5bc1c03930d.png

04

1c8cd535f78853c371c6c2881c32d0c6.png

链诊断

splas\[\[1\]\[1:5,\]

fdc2d39fd06dc5287abff7a8da45a35d.png

链诊断

trac("beta" )

193a49d502ec767c2d0923915563b63a.png

链诊断

pa(pars="beta")

18f9f30ef603864b69d90b0a1b4135d6.png

更多链诊断

Stan 还可以从链中提取各种其他诊断,如置信区间、有效样本量和马尔可夫链平方误差。
链的值与各种链属性、对数似然、接受率和步长之间的比较图。

Stan 出错

stan使用的步骤太大。
可以通过手动增加期望的平均接受度来解决。
adapt_delta,高于其默认的0.8

stan(cntl = list(datta = 0.99, mxrh = 15))

这会减慢你的链的速度,但可能会产生更好的样本。

自制函数

Stan 也兼容自制函数。
如果你的先验或似然函数不标准,则很有用。

model {
beta ~ doubexp(0,w);
for(i in 1:n){
logprb(‐0.5*fs(1‐(exp(normalog(
siga))/yde));
}
}

结论

不要浪费时间编码和调整 RWMH.
Stan 运行得更快,会自动调整,并且应该会产生较好的样本。

参考文献

Alder, Berni J, and T E Wainwright. 1959. “Studies in Molecular Dynamics. I. General Method.” The Journal of Chemical Physics 31 (2). AIP: 459–66.

Hoffman, Matthew D, and Andrew Gelman. 2014. “The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Machine Learning Research 15 (1): 1593–1623.


d0bcc1f933d012fd0dea57be13eca994.jpeg

点击文末“阅读原文”

获取全文完整资料。

本文选自《R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据》。

d0c2b64d2912b1f607d0e9264fe297a8.jpeg

78b79eb116510e18474b34ba551687ab.png

点击标题查阅往期内容

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断

【视频】马尔可夫链蒙特卡罗方法MCMC原理与R语言实现|数据分享

R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间

R语言马尔可夫MCMC中的METROPOLIS HASTINGS,MH算法抽样(采样)法可视化实例

python贝叶斯随机过程:马尔可夫链Markov-Chain,MC和Metropolis-Hastings,MH采样算法可视化

Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现

Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析

R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断

R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例

R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据

R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

Python贝叶斯回归分析住房负担能力数据集

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

Python用PyMC3实现贝叶斯线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言贝叶斯线性回归和多元线性回归构建工资预测模型

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言stan进行基于贝叶斯推断的回归模型

R语言中RStan贝叶斯层次模型分析示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型

R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

630af835fbcc126f98e03b135fc6c2fb.png

0fd4ffe79b93a2526c5d55815d047b39.jpeg

eb4ab7679bfee1bc71484cf6fd854837.png

相关文章:

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据...

全文链接&#xff1a;http://tecdat.cn/?p24456 如果你正在进行统计分析&#xff1a;想要加一些先验信息&#xff0c;最终你想要的是预测。所以你决定使用贝叶斯&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 相关视频 但是&#xff0c;你没有共轭先验。你…...

【PowerShell】PowerShell的Core版本的额外配置

在PowerShell 7.1 安装完成后,默认情况下打开PowerShell 会直接进入到系统内置的PowerShell,如果希望通过远程连接或者PowerShell Web Access 进入到PowerShell 7环境的界面,就需要进行环境的再配置才能实现PowerShell 7.1 的环境连接。需要为外部的环境提供连接的话需要按照…...

数据结构----链式栈

目录 前言 链式栈 操作方式 1.存储结构 2.初始化 3.创建节点 4.判断是否满栈 5.判断是否空栈 6.入栈 7.出栈 8.获取栈顶元素 9.遍历栈 10.清空栈 完整代码 前言 前面我们学习过了数组栈的相关方法&#xff0c;&#xff08;链接&#xff1a;线性表-----栈&#xff08;栈…...

实在智能携手40+央企,探索财务大模型及数智化实践与应用

“这次培训给我一个最大的感触就是&#xff0c;过去以为AI智能化、大模型技术是很高深的事情。但现在&#xff0c;我们通过RPA等数字化工具&#xff0c;自主根据自己的工作岗位&#xff0c;完成业务自动化流程的开发和设计。AI技术没有想象中的那么难入门。” 这是一位参加了“…...

upload-labs文件上传1-5关

第一关 编写一句话木马1.php&#xff0c;编写完成后将后缀名修改为png 将1.png上传&#xff0c;上传时使用bp抓包 抓包后将后缀名修改为png 连接蚁剑 第二关 上传1.php&#xff0c;显示文件类型不正确 使用bp抓包发送重发器&#xff0c;修改文件后缀名后点击发送&#xff0c;…...

git的基本使用

查看当前分支 git branch //查看本地分支 git branch -a // 查看本地和远程的分支切分支 git checkout -b 分支的名字从当前分支切换到其他分支 拉取远程分支到本地 拉取远程develop分支代码到本地develop分支 git checkout -b develop origin/developgit merge B分支合并…...

Mac台式电脑内存清理方法教程

对于一些小白用户&#xff0c;如果觉得以上的清理方法比较复杂却又想要更好的优化Mac电脑内存&#xff0c;专业的系统清理软件是一个不错的选择。比起花几个小时时间浏览文件夹、删除临时文件、缓存和卸载残留。Cleanmymac X&#xff0c;只需单击几下即可完成所有内存清理工作&…...

FL Studio怎么破解?2023年最新FL Studio 21图文安装激活教程?FL 21中文版下载 v21.1.1.3750 汉化 版

fl studio21中文解锁特别破解版是一款功能强大的编曲软件&#xff0c;也就是众所熟知的水果软件。它可以编曲、剪辑、录音、混音&#xff0c;让您的计算机成为全功能录音室。除此之外&#xff0c;这款软件功能非常强大&#xff0c;为用户提供了许多音频处理工具&#xff0c;包含…...

Zookeeper高级_四字命令

之前使用stat命令来验证ZooKeeper服务器是否启动成功&#xff0c;这里的stat命令就是ZooKeeper 中最为典型的命令之一。ZooKeeper中有很多类似的命令&#xff0c;它们的长度通常都是4个英文字母&#xff0c;因此我们称之为“四字命令”。 添加配置 vim zoo.cfg 4lw.commands…...

/usr/bin/ld: cannot find -lmysqlcllient

文章目录 1. question: /usr/bin/ld: cannot find -lmysqlcllient2. solution 1. question: /usr/bin/ld: cannot find -lmysqlcllient 2. solution 在 使用编译命令 -lmysqlclient时&#xff0c;如果提示这个信息。 先确认一下 有没有安装mysql-devel 执行如下命令 yum inst…...

折线图geom_line()参数选项

往期折线图教程 图形复现| 使用R语言绘制折线图折线图指定位置标记折线图形状更改 | 绘制动态折线图跟着NC学作图 | 使用python绘制折线图 前言 我们折线的专栏推出一段时间&#xff0c;但是由于个人的原因&#xff0c;一直未进行更新。那么今天&#xff0c;我们也参考《R语…...

百度SEO优化基本原理(掌握SEO基础,提高网站排名)

随着互联网的迅速发展&#xff0c;越来越多的企业开始意识到网站优化的重要性&#xff0c;其中百度SEO优化是企业不可忽视的一项工作。本文将介绍百度SEO优化的基本概念、步骤、原理、解决方法和提升网站标题优化的方法。蘑菇号-www.mooogu.cn 百度SEO优化是指针对百度搜索引擎…...

2023 ICPC 网络赛 第一场 部分题解 (待完善)

D Transitivity 题解: 根据题意可以推出结论: 如果存在连通块,那么这个连通块要满足条件,必然是满连通块. 一共有两种情况 1. 存在一个连通块不是满连通块 设cnt表示连通块的节点个数, num表示连通块边的个数 一个连通块的贡献 cnt*(cnt-1)/2 - num; 那么最终答案 连…...

Hadoop的HDFS高可用方案

一、Hadoop高可用简介 Hadoop 高可用 (High Availability) 分为 HDFS 高可用和 YARN 高可用&#xff0c;两者的实现基本类似&#xff0c;但 HDFSNameNode 对数据存储及其一致性的要求比 YARN ResourceManger 高得多&#xff0c;所以它的实现也更加复杂 1、HDFS系统高可用简介…...

【计算机基础】让我们重新认识一下Visual Stduio及其操作,知识点汇总!!

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…...

使用Node构建私人代理池

在进行大规模数据采集时&#xff0c;经常会遇到网站反爬虫机制导致爬虫被封的问题。为了解决这个困扰&#xff0c;本文将向大家介绍如何利用Node.js构建私人代理池&#xff0c;提供稳定的代理&#xff0c;实现高效、可靠的爬虫操作。跟随本文一起学习&#xff0c;拥有解封爬虫的…...

2023年“羊城杯”网络安全大赛 决赛 AWDP [Break+Fix] Web方向题解wp 全

终于迎来了我的第一百篇文章。 这次决赛赛制是AWDP。BreakFix&#xff0c;其实就是CTFFix&#xff0c;Fix规则有点难崩。Break和Fix题目是一样的。 总结一下&#xff1a;败北&#xff0c;还是太菜了得继续修炼一下。 一、Break ezSSTI 看到是SSTI&#xff0c;焚靖直接一把梭…...

如何用好免费的ChatGPT

如何用好免费的ChatGPT 前言ChatGPT使用入口在线体验地址&#xff1a;点我体验 ChatGPT介绍ChatGPT初级使用技巧初级使用技巧&#xff1a;清晰明了的问题表达 ChatGPT中级使用语法中级使用语法&#xff1a;具体化问题并提供背景信息 ChatGPT高级使用高级使用&#xff1a;追问、…...

golang 实现带令牌限流的JWT demo

demo里提供了三个接口&#xff0c;认证取token&#xff0c;刷新token&#xff0c;获取信息&#xff0c;token过期前也会在header里写上新token&#xff08;便于客户端更换&#xff09; package mainimport ("fmt""net/http""sync""time&qu…...

【web开发】9、Django(4)ajax请求

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、Ajax是什么&#xff1f;二、使用步骤二、订单管理 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、Ajax是什么&#xff1f; Ajax&…...

消息队列中,如何保证消息的顺序性?

本文选自&#xff1a;advanced-java 作者&#xff1a;yanglbme 问&#xff1a;如何保证消息的顺序性&#xff1f; 面试官心理分析 其实这个也是用 MQ 的时候必问的话题&#xff0c;第一看看你了不了解顺序这个事儿&#xff1f;第二看看你有没有办法保证消息是有顺序的&#xf…...

Shell别名的使用方法及管理技巧

文章目录 1. 引言1.1 概述1.2 目的1.3 适用范围 2. Shell和别名2.1 Shell简介2.2 别名的作用2.3 别名的语法 3. 创建别名3.1 临时别名3.2 永久别名 4. 别名的应用4.1 简化命令4.2 自定义命令4.3 提高工作效率 5. 管理别名5.1 查看别名5.2 修改别名5.3 删除别名 6. 实例演示6.1 …...

C/C++选择题好题分享

...

kafka副本机制

目录 前言 副本定义 副本角色 In-sync Replicas&#xff08;ISR&#xff09; 参考资料 前言 现在的很多的分布式系统都支持副本的机制&#xff0c;比如Mysql就有副本的机制&#xff0c;一般使用副本有如下特性和好处。 提供数据冗余。即使系统部分组件失效&#xff0c;系…...

服务注册发现_actuator微服务信息完善

SpringCloud体系里的&#xff0c;服务实体向eureka注册时&#xff0c;注册名默认是IP名:应用名:应用端口名。 问题&#xff1a; 自定义服务在Eureka上的实例名怎么弄呢 在服务提供者pom中配置Actuator依赖 <!-- actuator监控信息完善 --> <dependency><groupId…...

常见列表字典排序

一、列表排序 demoList [1, 3, 2, 4, 9 ,7]res sorted(demoList) # 默认升序# 降序 # res sorted(demoList, reverseTrue)print(res)二、字典排序 demoDict {"篮球": 5, "排球": 9, "网球": 6, "足球": 3}# sorted排序 res so…...

【Acwing1027】方格取数(动态规划)题解

题目描述 思路分析 错误思路&#xff1a; 贪心法&#xff0c;先走一次求出最大值&#xff0c;把走过的路上面的数值清零&#xff0c;然后用同样的方法再走一遍求最大值&#xff0c;然后让这两个最大值相加就是最后的结果。 很多人在看到这个题目的时候会有上面的思路&#x…...

合并区间:解决区间重叠问题的高效算法

合并区间&#xff1a;解决区间重叠问题的高效算法 leetcode 56. 合并区间 合并区间是一个常见的编程问题&#xff0c;通常涉及到一组区间&#xff0c;你需要将重叠的区间合并成更大的区间。这篇博客将介绍这个问题的背景&#xff0c;然后解释一个高效的解决方案&#xff0c;同…...

万字总结HTML超文本标记语言

一、前言:什么是网页? 网站是指在因特网上根据一定的规则,使用 HTML 等制作的用于展示特定内容相关的网页集合。网页是网站中的一“页”,通常是 HTML 格式的文件,它要通过浏览器来阅读。 网页是构成网站的基本元素,它通常由图片、链接、文字、声音、视频等元素组成。通常…...

Java线程池是如何保证核心线程不被销毁的

来源: Java线程池是如何保证核心线程不被销毁的_朝 花 拾 夕的博客-CSDN博客 对于Java中 Thread 对象&#xff0c;同一个线程对象调用 start 方法后&#xff0c;会在执行完run 后走向终止&#xff08;TERMINATED&#xff09;状态&#xff0c;也就是说一个线程对象是不可以通过多…...

网络网站制作/常宁seo外包

什么是SourceAFIS&#xff1f;SourceAFIS是一种指纹识别引擎&#xff0c;可以获取一对人类的指纹图像并返回其相似性分数。 它可以进行1&#xff1a;1的比较以及高效的1&#xff1a;N搜索。 这是SourceAFIS算法的Java实现1.maven环境依赖引入com.machinezoo.sourceafissourceaf…...

重庆网站设计/湖北疫情最新消息

AVS(Address Verification Service):验证信用卡交易的地址信息。 CSC(Card Security Code):信用卡安全码。 http://go.developer.ebay.com/developers/community/blogs/pp_integrations_preston/testing-paypal-payflow-gateway#comment-88495转载于:https://www.cnblogs.com/f…...

app怎么开发制作/重庆seo网络推广关键词

问题描述 ACM 小组接受了计算机组成原理教研室的一项开发任务&#xff0c;要为计算机组成原理课程开发一款实验面板仿真系统&#xff0c;其中有一项数字显示屏的任务分配给了你。数字显示屏是由一组数字显示单元组成的&#xff0c;每个数字显示单元由七个液晶显示管组成&#…...

app开发科技网站建设/西安网站关键词优化推荐

先来理解一下函数是具有特定功能的语句&#xff0c;需要则调用它&#xff0c;不过得先了解其具有什么功能&#xff0c;可以返回什么类型的。了解了这一些后我们可以知道函数是对调用者隐藏执行的细节&#xff0c;返回我们要的结果。 mysql_fetch_array()的功能是取一条记录&am…...

公司做网站建设/昆明seo建站

选自HEOI2014 BZOJ 3609: [Heoi2014]人人尽说江南好 因为游戏规定&#xff0c;首先无法合并的一方判输&#xff0c; 每人都会使用最优策略&#xff0c; 那么贪心的想&#xff0c; 最优合并方案最后石子排布情况一定为m, m....m, n%m. 初始每堆石子都为一个&#xff0c; 所以这种…...

爱漫画-只做精品的韩漫网站/免费网站模板

导语大家好&#xff0c;我是智能仓储物流技术研习社的社长&#xff0c;你的老朋友&#xff0c;老K。知识星球 * 原创电子书 * 深海社区 * 微信群 更多PPT文件请球友自己到知识星球领取。、知名企业-智能仓储物流技术研习社-建立智能物流系统甲方、集成商与周边配套商共同技术语…...