当前位置: 首页 > news >正文

Hadoop-sqoop

sqoop

1. Sqoop简介及原理

简介:

Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysq1.postgresql..)间进行数据的传递,可以将一个关系型数据库(例如: MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop 的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

Sqoop项目开始于2009年,最早是作为Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop独立成为一个Apache项目。v

Sqoop2的最新版本是1.99.7。请注意,2与1不兼容,且特征不完整,它并不打算用于生产部署。

原理:

将导入或导出命令翻译成mapreduce程序来实现。

在翻译出的mapreduce中主要是对inputformat和 outputformat进行定制。

2.sqoop安装部署

解压、改名

[root@kb129 install]# tar -xvf ./sqoop-1.4.7.tar.gz -C /opt/soft/

[root@kb129 soft]# mv sqoop-1.4.7/ sqoop147

拷贝配置文件

[root@kb129 conf]# pwd

/opt/soft/sqoop147/conf

[root@kb129 conf]# cp sqoop-env-template.sh sqoop-env.sh

编辑配置文件

[root@kb129 conf]# vim ./sqoop-env.sh

export HADOOP_COMMON_HOME=/opt/soft/hadoop313

export HADOOP_MAPRED_HOME=/opt/soft/hadoop313

export HBASE_HOME=/opt/soft/hbase235

export HIVE_HOME=/opt/soft/hive312

export HIVE_CONF_DIR=/opt/soft/hive312/conf

export ZOOCFGDIR=/opt/soft/zk345/conf

解压

[root@kb129 install]# tar -xvf ./sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz -C ./

拷贝jar包至sqoop147根路径下

[root@kb129 sqoop-1.4.7.bin__hadoop-2.6.0]# cp ./sqoop-1.4.7.jar /opt/soft/sqoop147/

继续拷贝jar包

[root@kb129 lib]# pwd

/opt/soft/sqoop147/lib

[root@kb129 lib]# cp /opt/soft/hive312/lib/hive-common-3.1.2.jar ./

[root@kb129 lib]# cp /opt/install/sqoop-1.4.7.bin__hadoop-2.6.0/lib/avro-1.8.1.jar ./

[root@kb129 lib]# cp /opt/soft/hive312/lib/mysql-connector-java-8.0.29.jar ./

拷贝完毕:

配置sqoop环境变量并source

#SQOOP

export SQOOP_HOME=/opt/soft/sqoop147

export PATH=$SQOOP_HOME/bin:$PATH

验证安装

[root@kb129 lib]# sqoop version

3.sqoop操作基本命令

3.1  基本操作:参考 https://www.cnblogs.com/qingyunzong/p/8807252.html

查看sqoop一般操作命令

[root@kb129 lib]# sqoop help

连接mysql命令(\代表换行输入)

[root@kb129 lib]# sqoop list-databases \

 --connect jdbc:mysql://kb129:3306/ \

 --username root \

 --password 123456

查看sql50数据库内的表

[root@kb129 lib]# sqoop list-tables --connect jdbc:mysql://kb129:3306/sql50 --username root --password 123456

在hive默认库中创建表(来源mysql库中的help_keyword表,仅复制表结构)

[root@kb129 lib]# sqoop create-hive-table \

--connect jdbc:mysql://kb129:3306/mysql \

--username root --password 123456 \

--table help_keyword \

--hive-table hk

3.2  Sqoop import

1、从Mysql导入到HDFS中

1)导入mysql库中的help_keyword的数据到HDFS默认路径上/user/root

sqoop import --connect jdbc:mysql://kb129:3306/mysql --username root --password 123456 --table help_keyword -m 1

导入sql50库中的student表的数据到HDFS默认路径上

sqoop import --connect jdbc:mysql://kb129:3306/sql50 --username root --password 123456 --table student -m 1

2)导入: 指定分隔符,指定导入路径

sqoop import --connect jdbc:mysql://kb129:3306/sql50 --username root --password 123456 --table student --target-dir /kb23/student --fields-terminated-by '\t' -m 1

3)导入数据:带where条件

sqoop import --connect jdbc:mysql://kb129:3306/mysql --username root --password 123456 --where "name='STRING'" --table help_keyword --target-dir /kb23/hk1 -m 1

4)导入:指定自定义查询SQL

sqoop import --connect jdbc:mysql://kb129:3306/mysql --username root --password 123456 --target-dir /kb23/hk2 --query 'select help_keyword_id,name from help_keyword where $CONDITIONS and name="STRING"' --split-by help_keyword_id --fields-terminated-by ':' -m 4

在以上需要按照自定义SQL语句导出数据到HDFS的情况下:

(1)引号问题,要么外层使用单引号,内层使用双引号,$CONDITIONS的$符号不用转义, 要么外层使用双引号,那么内层使用单引号,然后$CONDITIONS的$符号需要转义

(2)自定义的SQL语句中必须带有WHERE \$CONDITIONS

2、把MySQL数据库中的表数据导入到Hive中

1)Sqoop 导入关系型数据到 hive 的过程是先导入到 hdfs,然后再 load 进入 hive

普通导入:数据存储在默认的default hive库中,表名就是对应的mysql的表名

sqoop import --connect jdbc:mysql://kb129:3306/mysql --username root --password 123456 --table help_keyword --hive-import -m 1

导入过程

第一步:导入mysql.help_keyword的数据到hdfs的默认路径

第二步:自动仿造mysql.help_keyword去创建一张hive表, 创建在默认的default库中

第三步:把临时目录中的数据导入到hive表中

2)指定行分隔符和列分隔符,指定hive-import,指定覆盖导入,指定自动创建hive表,指定表名,指定删除中间结果数据目录

sqoop import  \

--connect jdbc:mysql://kb129:3306/mysql  \

--username root  \

--password 123456  \

--table help_keyword  \

--hive-import  \

--hive-overwrite  \

--create-hive-table  \

--delete-target-dir \

--hive-database  kb23db \

--hive-table new_help_keyword

3)增量导入(追加)

(执行增量导入之前,先清空hive数据库中的my_help_keyword表中的数据,方便查看)

从原表501行数据开始到最后,追加到目标表中

sqoop import  \

--connect jdbc:mysql://kb129:3306/mysql  \

--username root  \

--password 123456  \

--table help_keyword  \

--hive-import  \

--incremental  append  \

--hive-database kb23db \

--check-column  help_keyword_id \

--last-value 500  \

-m 1

在实际工作当中,数据的导入,很多时候都是只需要导入增量数据即可,并不需要将表中的数据每次都全部导入到 hive 或者 hdfs 当中去这样会造成数据重复的问题。因此一般都是选用一些字段进行增量的导入, sqoop 支持增量的导入数据。

-- 所谓的增量数据指的是上次至今中间新增加的数据

-- sqoop支持两种模式的增量导入

append追加 根据数值类型字段进行追加导入, 大于指定的last-value

lastmodified 根据时间戳类型字段进行追加, 大于等于指定的last-value

注意在lastmodified模式下,还分为两种情形: append merge-key

增量导入是仅导入新添加的表中的行的技术。

--check-column(col)

用来指定一些列,这些列在增量导入时用来检查这些数据是否作为增量数据进行导入,和关系型数据库中的自增字段及时间戳类似。

注意:这些被指定的列的类型不能使任意字符类型,如 char、varchar 等类型都是不可以的,同时-- check-column 可以去指定多个列。

--incremental(mode)

append:追加,比如对大于 last-value 指定的值之后的记录进行追加导入。

lastmodified:最后的修改时间,追加 last-value 指定的日期之后的记录。

--last-value(value)

指定自从上次导入后列的最大值(大于该指定的值),也可以自己设定某一值。

3、把MySQL数据库中的表数据导入到hbase

3.3  Sqoop export

参考小白篇(十二):sqoop export指令实操_belialxing的博客-CSDN博客

https://blog.csdn.net/d905133872/article/details/129421948?spm=1001.2014.3001.5502

1.将hive中的表数据导入到mysql中

(1)

-- hive创建一张表,默认是textfile类型的

create table if not exists kb23db.export_txt_demo

(

name    string,

address string

);

-- 创建测试数据

insert into kb23db.export_txt_demo values('测试1','上海');

insert into kb23db.export_txt_demo values('测试2','北京');

(2)

-- 创建接收表

create table sql50.export_txt_demo

(

name varchar(10),

address varchar(10)

);

sqoop export --connect 'jdbc:mysql://kb129:3306/sql50' \

--username 'root' \

--password '123456' \

--table 'export_txt_demo' \

--export-dir  /hive312/warehouse/kb23db.db/export_txt_demo \

--input-fields-terminated-by '\001' \

--input-null-string '\\N' \

--input-null-non-string '\\N'

 

参数说明:

--connect '数据库连接' \

--username '数据库账号' \

--password '数据库密码' \

--table '数据库表名' \

--export-dir  集群hdfs中导出的数据目录 \

--input-fields-terminated-by '分隔符,textfile类型默认\001' \

--input-null-string '空值处理:\\N' \

--input-null-non-string '空值处理:\\N'

相关文章:

Hadoop-sqoop

sqoop 1. Sqoop简介及原理 简介: Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysq1.postgresql..)间进行数据的传递,可以将一个关系型数据库(例如: MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop 的HDFS中&…...

[论文阅读]YOLOV1:You Only Look Once:Unified, Real-Time Object Detection

摘要 我们提出了YOLO,一种新的目标检测方法。之前的目标检测工作重新使用分类器来执行检测。相反,我们将目标检测表述为空间分离的边界框和相关类概率的回归问题。单个神经网络在一次评估中直接从完整图像中预测边界框和类别概率。由于整个检测管道是一…...

Ubuntu 20.04 安装MySQL 8.0.34

MySQL安装 sudo wget https://cdn.mysql.com/archives/mysql-8.0/mysql-server_8.0.31-1ubuntu20.04_amd64.deb-bundle.tar下载MySQL文件。 sudo mkdir /mysql8创建目录。 sudo tar -xf mysql-server_8.0.31-1ubuntu20.04_amd64.deb-bundle.tar -C /mysql8进行解压。 需…...

MySQL 高级语句 Part1(进阶查询语句+MySQL数据库函数+连接查询)

高级语句 第一部分 一、MySQL进阶查询语句1.1 select ----显示表格中一个或数个字段的所有数据记录1.2 distinct ----不显示重复的数据记录1.3 where ----有条件查询1.4 and or ----且 或1.5 in----显示已知的值的数据记录1.6 between----显示两个值范围内的数据记录1.7 通配符…...

Rust免杀 Shellcode加载与混淆2

前言 这是半年前我学习Rust和免杀时的一些记录,最近打开知识库看到了这篇半年前的笔记,并且发现我常逛的安全社区都比较少有人分享Rust以及Rust免杀的帖子,于是想着将这篇笔记分享出来供大家参考和指正。由于我写这篇文章时也刚刚开始接触Ru…...

牛客java训练题 day1

9.24 day1 Q 1. this 指针是用来干什么的? 2.基类和派生类分别是指什么? 3.为什么方法中不能写静态变量 4. 解释一下ASCII码和ANSI码和两者的区别 5.简述j ava.io java.sql java.awt java.rmi 分别是什么类型的包 6. 看下面一段代码:…...

接口测试练习步骤

在接触接口测试过程中补了很多课, 终于有点领悟接口测试的根本; 偶是个实用派~,那么现实中没有用的东西,基本上我都不会有很大的概念; 下面给的是接口测试的统一大步骤,其实就是让我们对接口…...

Qt/C++音视频开发56-udp推流和拉流/组播和单播推流

一、前言 之前已经实现了rtsp/rtmp推流,rtsp/rtmp/hls/flv/ws-flv/webrtc等拉流,这种一般都需要依赖一个独立的流媒体服务程序,有没有一种更便捷的方式不需要这种依赖,然后又能实现推拉流呢,当然有的那就是udpp推流&a…...

人工智能轨道交通行业周刊-第61期(2023.9.18-9.24)

本期关键词:焊线机器人、智能综合运维管理系统、信号平面图、铁路部门架构、书生浦语大模型 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网上榜铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通…...

for...in 和 for...of 的区别

for...in 和 for...of 都是 JavaScript 中的循环语句,但它们的作用和使用方式略有不同。 1、for..in 循环 for..in 循环用于遍历对象的可枚举属性,它会将对象的每个属性名称(或键名)作为迭代变量来遍历。 以下是 for...in 的基本语法 for (variable …...

高并发系统 - 接口幂等技术方案,高可用系统架构与技术选型

幂等概念来自于数学,在计算机科学中,幂等表示一次后、或多次请求某一资源,应该有同样的影响效果。 在业务表现上一般是同样的数据效果,下面就常用的业务场景,来聊聊幂等的技术方案。 ----------------- 数据层 ----------------- 索引与事务 根据业务需要,给表添加唯一索…...

简单的手机电脑无线传输方案@固定android生成ftp的IP地址(android@windows)

文章目录 abstractwindows浏览android文件环境准备客户端软件无线网络链接步骤其他方法 手机浏览电脑文件公网局域网everythingpython http.server 高级:固定android设备IP准备检查模块是否生效 windows 访问ftp服务器快捷方式命令行方式双击启动方式普通快捷方式映射新的网络位…...

Unity3D 检测鼠标位置的Sprite像素颜色

思路 获取鼠标所在屏幕坐标(Vector2)通过相机ScreenToWorldPoint(Vector3)转为世界坐标 (注意Vector3的z是距离相机的距离,相机需要正交)通过SpriteRenderer访问边界Bounds通过Bounds.Contain检测世界坐标是否在SpriteBounds内通过比例计算来确定在Sprite内的UV坐标…...

layui input 监听事件

//监听表单单选框复选框选择 form.on(radio, function (data) { console.log(data.value); //得到被选中的值 }); //监听表单下拉菜单选择 form.on(select, function (data) { console.log(data.value); //得到被选中的值 }); //监听表单复选框选择 …...

一致性思维链(SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS)

概要 思维链已经在很多任务上取得了非常显著的效果,这篇论文中提出了一种 self-consistency 的算法,来代替 贪婪解码 算法。本方法通过 采样多个思维链集合,然后LLM模型生成后,选择一个最一致的答案作为最后的结果。一致性思维链…...

腾讯云16核服务器配置大全_16核CPU型号性能测评

腾讯云16核CPU服务器有哪些配置可以选择?可以选择标准型S6、标准型SA3、计算型C6或标准型S5等,目前标准型S5云服务器有优惠活动,性价比高,计算型C6云服务器16核性能更高,轻量16核32G28M带宽优惠价3468元15个月&#xf…...

HTML中Input elements should have autocomplete attributes的解决方案

kwfwservice.php:1 [DOM] Input elements should have autocomplete attributes (suggested: “current-password”): (More info: https://goo.gl/9p2vKq) <input name"password" id"password" lay-verify"required" placeholder"密码&…...

2808. 使循环数组所有元素相等的最少秒数;1015. 可被 K 整除的最小整数;1001. 网格照明

2808. 使循环数组所有元素相等的最少秒数 核心思想&#xff1a;枚举每个元素作为相等元素最多需要多少秒&#xff0c;然后维护它的最小值。最多需要多少秒是怎么计算的&#xff0c;我们可以把相等值的下标拿出来&#xff0c;然后你会发现两个相邻下标&#xff08;相邻下标只的…...

Python爬虫在Web应用自动化测试中的应用

在Web应用开发过程中&#xff0c;自动化测试是确保应用质量和稳定性的重要环节。本文将介绍如何使用Python爬虫与自动化测试技术相结合&#xff0c;实现对Web应用进行自动化测试的方法和步骤。通过这种结合&#xff0c;我们可以提高测试效率、减少人力成本&#xff0c;并确保应…...

苹果手机短信删除了怎么恢复?3种有效方法介绍

手机短信是一种即时通信方式&#xff0c;人们可以使用短信来达到快速传递信息的目的。在没有网络或者网络不稳定的时候&#xff0c;短信仍然可以做到发送和接收&#xff0c;这弥补了其他网络通信软件的缺点。 所以说&#xff0c;手机短信仍然是我们生活中不可缺少的一部分。当…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

Spring Boot + MyBatis 集成支付宝支付流程

Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例&#xff08;电脑网站支付&#xff09; 1. 添加依赖 <!…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...