当前位置: 首页 > news >正文

中山网站建设咨询/南昌seo网站排名

中山网站建设咨询,南昌seo网站排名,mac 下载wordpress,南宁网站建设博信又到了开心的公式时刻了。 先看看渲染方程 现在关注第二部分,镜面反射。 其中 这里很棘手,与输入wi和输出w0都有关系,所以,再近似 其中第一部分,就是预滤波环境贴图,形式上与前面的辐照度图很相似&#…

又到了开心的公式时刻了。
先看看渲染方程
在这里插入图片描述
现在关注第二部分,镜面反射。
在这里插入图片描述
其中在这里插入图片描述
这里很棘手,与输入wi和输出w0都有关系,所以,再近似
在这里插入图片描述
其中第一部分,就是预滤波环境贴图,形式上与前面的辐照度图很相似,那么能不能用同样的方法呢?
先看看镜面反射和漫反射的图
在这里插入图片描述
可以看到,镜面反射是绕着出射向量的一个范围(成为波瓣),而漫反射是绕着法线方向均匀分布的。
再想想积分辐照度图时,是以法线向量为中心,进行积分的。在这里插入图片描述
那很自然的想到,积分镜面反射的预滤波环境贴图可以以出射向量为中心,在波瓣范围内积分。

然而, 波瓣有大有小,是因为粗糙度不同,
在这里插入图片描述
所以,不能只积分一次,而是多次,按照不同粗糙度积分后写到mipmap,或者单独的纹理中。这里为了方便,分别写到不同的纹理中。

那么该如何积分呢?辐照度图是在经度0到360,纬度0到90内均匀积分。
在这里插入图片描述

而镜面反射中,给定入射方向,波瓣指向方向就是微平面半向量的反射方向。所以,只在波瓣内积分就可以了,即重要性采样。
这时就可以使用蒙特卡洛积分,即在大数定律基础上,采取N样本即可。N越大越准。pdf为概率密度函数。
在这里插入图片描述
比如
在这里插入图片描述
采样样本越多,越靠近中间范围。因为中间范围概率大。

以上为均匀采样,

如果采样样本有偏,则会更快收敛。比如通过低差异序列获取样本。
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}

vec2 Hammersley(uint i, uint N)
{
return vec2(float(i)/float(N), RadicalInverse_VdC(i));
}
或者无位运算的
"float VanDerCorpus(uint n, uint base) "
"{ "
" float invBase = 1.0 / float(base); "
" float denom = 1.0; "
" float result = 0.0; "
" for (uint i = 0u; i < 32u; ++i) "
" { "
" if (n > 0u) "
" { "
" denom = mod(float(n), 2.0); "
" result += denom * invBase; "
" invBase = invBase / 2.0; "
" n = uint(float(n) / 2.0); "
" } "
" } "
"return result; "
"} "
" "
"vec2 HammersleyNoBitOps(uint i, uint N) "
"{ "
" return vec2(float(i) / float(N), VanDerCorpus(i, 2u)); "
"} "

然后根据法线方向,粗糙度和低差异序列生成采样向量,该向量大体围绕着预估的波瓣方向。
“vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)”
“{”
“float a = roughness * roughness;”
“float phi = 2.0 * PI * Xi.x;”
“float cosTheta = sqrt((1.0 - Xi.y)/(1.0+(a*a-1.0) * Xi.y));”
“float sinTheta = sqrt(1.0 - cosTheta * cosTheta);”
“vec3 H;”
“H.x = cos(phi) * sinTheta;”
“H.y = sin(phi) * sinTheta;”
“H.z = cosTheta;”
“vec3 up = abs(N.z) < 0.999 ? vec3(0.0,0.0,1.0) : vec3(1.0,0.0,0.0);”
“vec3 tangent = normalize(cross(up,N));”
“vec3 bitangent = cross(N,tangent);”
“vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;”
“return normalize(sampleVec);”
“}”
运行结果如下
在这里插入图片描述
代码如下
#include <osg/TextureCubeMap>
#include <osg/TexGen>
#include <osg/TexEnvCombine>
#include <osgUtil/ReflectionMapGenerator>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <osg/NodeVisitor>
#include <osg/ShapeDrawable>

static const char * vertexShader =
{
//“#version 120 core\n”
“in vec3 aPos;\n”
“varying vec3 localPos;\n”
“void main(void)\n”
“{\n”
“localPos = aPos;\n”
" gl_Position = ftransform();\n"
//“gl_Position = view * view * vec4(aPos,1.0);”
“}\n”
};

static const char psShader =
{
“varying vec3 localPos;\n”
“uniform samplerCube environmentMap;”
“uniform float roughness;”
“const float PI = 3.1415926;”
“float VanDerCorpus(uint n, uint base) "
“{ "
" float invBase = 1.0 / float(base); "
" float denom = 1.0; "
" float result = 0.0; "
" for (uint i = 0u; i < 32u; ++i) "
" { "
" if (n > 0u) "
" { "
" denom = mod(float(n), 2.0); "
" result += denom * invBase; "
" invBase = invBase / 2.0; "
" n = uint(float(n) / 2.0); "
" } "
" } "
“return result; "
“} "
" "
“vec2 HammersleyNoBitOps(uint i, uint N) "
“{ "
" return vec2(float(i) / float(N), VanDerCorpus(i, 2u)); "
“} "
//“float RadicalInverse_Vdc(uint bits)\n”
//”{”
//“bits = (bits << 16u) | (bits >> 16u);”
//“bits = ((bits & 0x55555555u) << 1u ) | (bits & 0xAAAAAAAAu) >> 1u);”
//“bits = ((bits & 0x33333333u) << 2u ) | (bits & 0xCCCCCCCCu) >> 2u);”
//“bits = ((bits & 0x0F0F0F0Fu) << 4u ) | (bits & 0xF0F0F0F0u) >> 4u);”
//“bits = ((bits & 0x00FF00FFu) << 8u ) | (bits & 0xFF00FF00u) >> 8u);”
//“return float(bits) * 2.3283064365386963e-10;”
//”}”
//“vec2 Hammersley(uint i, uint N)”
//”{”
//“return vec2(float(i) / float(N), RadicalInverse_Vdc(i));”
//”}"
“vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)”
“{”
“float a = roughness * roughness;”
“float phi = 2.0 * PI * Xi.x;”
"float cosTheta = sqrt((1.0 - Xi.y)/(1.0+(a
a-1.0) * Xi.y));"
“float sinTheta = sqrt(1.0 - cosTheta * cosTheta);”
“vec3 H;”
“H.x = cos(phi) * sinTheta;”
“H.y = sin(phi) * sinTheta;”
“H.z = cosTheta;”
“vec3 up = abs(N.z) < 0.999 ? vec3(0.0,0.0,1.0) : vec3(1.0,0.0,0.0);”
“vec3 tangent = normalize(cross(up,N));”
“vec3 bitangent = cross(N,tangent);”
“vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;”
“return normalize(sampleVec);”
“}”
"void main() "
"{ "
" vec3 N = normalize(localPos); "
" vec3 R = N; "
" vec3 V = R; "
" "
" const uint SAMPLE_COUNT = 1024u; "
" float totalWeight = 0.0; "
" vec3 prefilteredColor = vec3(0.0); "
" for (uint i = 0u; i < SAMPLE_COUNT; ++i) "
" { "
" vec2 Xi = HammersleyNoBitOps(i, SAMPLE_COUNT); "
" vec3 H = ImportanceSampleGGX(Xi, N, roughness); "
" vec3 L = normalize(2.0 * dot(V, H) * H - V); "
" "
" float NdotL = max(dot(N, L), 0.0); "
" if (NdotL > 0.0) "
" { "
" prefilteredColor += texture(environmentMap, L).rgb * NdotL; "
" totalWeight += NdotL; "
" } "
" } "
" prefilteredColor = prefilteredColor / totalWeight; "
" "
" gl_FragColor = vec4(prefilteredColor, 1.0); "
"} "
};
class MyNodeVisitor : public osg::NodeVisitor
{
public:
MyNodeVisitor() : osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_ALL_CHILDREN)
{

}
void apply(osg::Geode& geode)
{int count = geode.getNumDrawables();for (int i = 0; i < count; i++){osg::ref_ptr<osg::Geometry> geometry = geode.getDrawable(i)->asGeometry();if (!geometry.valid()){continue;}osg::Array* vertexArray = geometry->getVertexArray();geometry->setVertexAttribArray(1, vertexArray);}traverse(geode);
}

};

int main()
{

osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer;osg::ref_ptr<osg::TextureCubeMap> tcm = new osg::TextureCubeMap;
tcm->setTextureSize(128, 128);
tcm->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR_MIPMAP_LINEAR);
tcm->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
tcm->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE);
tcm->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE);
tcm->setWrap(osg::Texture::WRAP_R, osg::Texture::CLAMP_TO_EDGE);std::string strImagePosX = "D:/hdr/Right face camera.bmp";
osg::ref_ptr<osg::Image> imagePosX = osgDB::readImageFile(strImagePosX);
tcm->setImage(osg::TextureCubeMap::POSITIVE_X, imagePosX);
std::string strImageNegX = "D:/hdr/Left face camera.bmp";
osg::ref_ptr<osg::Image> imageNegX = osgDB::readImageFile(strImageNegX);
tcm->setImage(osg::TextureCubeMap::NEGATIVE_X, imageNegX);std::string strImagePosY = "D:/hdr/Front face camera.bmp";;
osg::ref_ptr<osg::Image> imagePosY = osgDB::readImageFile(strImagePosY);
tcm->setImage(osg::TextureCubeMap::POSITIVE_Y, imagePosY);
std::string strImageNegY = "D:/hdr/Back face camera.bmp";;
osg::ref_ptr<osg::Image> imageNegY = osgDB::readImageFile(strImageNegY);
tcm->setImage(osg::TextureCubeMap::NEGATIVE_Y, imageNegY);std::string strImagePosZ = "D:/hdr/Top face camera.bmp";
osg::ref_ptr<osg::Image> imagePosZ = osgDB::readImageFile(strImagePosZ);
tcm->setImage(osg::TextureCubeMap::POSITIVE_Z, imagePosZ);std::string strImageNegZ = "D:/hdr/Bottom face camera.bmp";
osg::ref_ptr<osg::Image> imageNegZ = osgDB::readImageFile(strImageNegZ);
tcm->setImage(osg::TextureCubeMap::NEGATIVE_Z, imageNegZ);
tcm->setUseHardwareMipMapGeneration(true);
float minMipMapLevel = 0.0;
float maxMipMapLevel = 4.0;
tcm->setMinLOD(minMipMapLevel);
tcm->setMaxLOD(maxMipMapLevel);osg::ref_ptr<osg::Box> box = new osg::Box(osg::Vec3(0, 0, 0), 10);
osg::ref_ptr<osg::ShapeDrawable> drawable = new osg::ShapeDrawable(box);
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(drawable);
MyNodeVisitor nv;
geode->accept(nv);
osg::ref_ptr<osg::StateSet> stateset = geode->getOrCreateStateSet();
stateset->setTextureAttributeAndModes(0, tcm, osg::StateAttribute::OVERRIDE | osg::StateAttribute::ON);//shaderosg::ref_ptr<osg::Shader> vs1 = new osg::Shader(osg::Shader::VERTEX, vertexShader);
osg::ref_ptr<osg::Shader> ps1 = new osg::Shader(osg::Shader::FRAGMENT, psShader);
osg::ref_ptr<osg::Program> program1 = new osg::Program;
program1->addShader(vs1);
program1->addShader(ps1);
program1->addBindAttribLocation("aPos", 1);osg::ref_ptr<osg::Uniform> environmentMapUniform = new osg::Uniform("environmentMap", 0);
stateset->addUniform(environmentMapUniform);
float theMip = 3.0;
float roughness = theMip / maxMipMapLevel;
osg::ref_ptr<osg::Uniform> roughnessUniform = new osg::Uniform("roughness", roughness);
stateset->addUniform(roughnessUniform);stateset->setAttribute(program1, osg::StateAttribute::ON);viewer->setSceneData(geode);
viewer->realize();
return viewer->run();

}

相关文章:

十六,镜面IBL--预滤波环境贴图

又到了开心的公式时刻了。 先看看渲染方程 现在关注第二部分&#xff0c;镜面反射。 其中 这里很棘手&#xff0c;与输入wi和输出w0都有关系&#xff0c;所以&#xff0c;再近似 其中第一部分&#xff0c;就是预滤波环境贴图&#xff0c;形式上与前面的辐照度图很相似&#…...

信息安全:恶意代码防范技术原理.

信息安全&#xff1a;恶意代码防范技术原理. 恶意代码的英文是 Malicious Code, 它是一种违背目标系统安全策略的程序代码&#xff0c;会造成目标系统信息泄露、资源滥用&#xff0c;破坏系统的完整性及可用性。 目录&#xff1a; 恶意代码概述&#xff1a; &#xff08;1&a…...

开源媒体浏览器Kyoo

什么是 Kyoo &#xff1f; Kyoo 是一款开源媒体浏览器&#xff0c;可让您流式传输电影、电视节目或动漫。它是 Plex、Emby 或 Jellyfin 的替代品。Kyoo 是从头开始创建的&#xff0c;它不是一个分叉。一切都将永远是免费和开源的。 软件特性&#xff1a; 管理您的电影、电视剧…...

人脸解锁设备时出现相机报错

&#xff08;1&#xff09;背景分析 这是项目当中实际遇到的问题&#xff0c;如下代码仅用作分析和记录。 现在问题的现象是&#xff1a;刚亮屏大概在2s以内对着人脸一般是能解锁的&#xff0c;但是超过2s之后在对着人脸&#xff0c;是无法解锁成功的。 &#xff08;2&#…...

【广州华锐互动】利用VR开展工业事故应急救援演练,确保救援行动的可靠性和有效性

在工业生产中&#xff0c;事故的突发性与不可预测性常常带来巨大的损失。传统的应急演练方式往往存在场地限制、成本高、效果难以衡量等问题。然而&#xff0c;随着虚拟现实&#xff08;VR&#xff09;技术的快速发展&#xff0c;VR工业事故应急救援演练应运而生&#xff0c;为…...

还不知道数据类岗位的相关技能和职责吗?涤生大数据告诉你(二)

续接上文&#xff1a;还不知道数据类岗位的相关技能和职责吗&#xff1f;涤生大数据告诉你&#xff08;一&#xff09; 1.数据治理工程师 工作职责 数据治理工程师的工作职责主要包括以下几个方面&#xff1a; 1. 数据管理策略制定&#xff1a;制定和实施数据管理策略&#…...

常见应用层协议

一.HTTP&#xff08;超文本传输协议&#xff09; HTTP 和 HTTPS 二.FTP&#xff08;文件传输协议&#xff09; 三.SMTP&#xff08;简单邮件传输协议&#xff09; 四.POP3&#xff08;邮局协议版本3&#xff09; 五.IMAP&#xff08;互联网消息访问协议&#xff09; 六.DNS&am…...

解决docker容器无法关闭的问题

一般正常关闭&#xff1a; docker stop 容器ID解决方法 方法1&#xff1a;强制停止docker kill 容器ID方法2&#xff1a;直接重启dockersudo service docker stop方法3&#xff1a;直接删除容器&#xff0c;重新创建docker rm -f my_container...

2023-09-27 LeetCode每日一题(餐厅过滤器)

2023-09-27每日一题 一、题目编号 1333. 餐厅过滤器二、题目链接 点击跳转到题目位置 三、题目描述 给你一个餐馆信息数组 restaurants&#xff0c;其中 restaurants[i] [idi, ratingi, veganFriendlyi, pricei, distancei]。你必须使用以下三个过滤器来过滤这些餐馆信息…...

梯度下降法(SGD)原理

目录 梯度下降法(SGD)原理&#xff1a;求偏导 1. 梯度(在数学上的定义) 2. 梯度下降法迭代步骤 BGD批量梯度下降算法 BGD、SGD在工程选择上的tricks 梯度下降法(SGD)原理&#xff1a;求偏导 1. 梯度(在数学上的定义) 表示某一函数在该点处的方向导数沿着该方向取得最大值…...

QQ表情包存储位置解析

一些常见的设备和系统的QQ表情包存储位置&#xff1a; Windows系统&#xff1a; 路径&#xff1a;C:\Users[用户名]\Documents\Tencent Files[QQ号码]\Image\Image\CustomFace 在这个文件夹中&#xff0c;您可以找到所有自定义的QQ表情包。 Android系统&#xff1a; 路径&am…...

软件架构的演化和维护

软件架构的演化和维护 定义 定义 顶不住了&#xff0c;刷题去了&#xff0c;不搞这个了&#xff0c;想吐。。。...

C语言数组和指针笔试题(四)(一定要看)

目录 二维数组例题一例题二例题三例题四例题五例题六例题七例题八例题九例题十例题十一 结果 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 &#x1f412;&#x1f412;&#x1f412;个人主页 &#x1f978;&#x1f978;&#x1f978;C语言 &#x1f43f;️…...

FragmentManager is already executing transactions

本文解决问题&#xff1a; java.lang.IllegalStateException: FragmentManager is already executing transactions 问题背景描述&#xff1a; 在Fragment中 用tablayoutviewpagerfragment&#xff0c;即Fragment嵌套Fragment场景、或者ViewPager2嵌套ViewPager2时。 执行生命…...

Matlab中clear,close all,clc功能详细说明

背景&#xff1a; 我们在写matlab程序时&#xff0c;首行总是先敲入&#xff1a;clear; close all; clc;&#xff0c;但你真的知道这三句话的具体作用嘛&#xff0c;下面进行详细说明和演示。 一、clear的功能 clear的功能&#xff1a;清理工作区变量&#xff0c;不清理前是…...

Typora安装无需破解免费使用

Typora简介&#xff1a; 在介绍Typora软件之前&#xff0c;需要先介绍一下MARKDOWN。 MARKDOWN是一种轻量型标记语言&#xff0c;它具有“极简主义”、高效、清晰、易读、易写、易更改纯文本的特点。 Typora 是一款支持实时预览的 Markdown 文本编辑器。它有 OS X、Windows、…...

LuatOS-SOC接口文档(air780E)--errDump - 错误上报

示例 -- 基本用法, 10分钟上报一次,如果有的话 if errDump thenerrDump.config(true, 600) end-- 附开源服务器端: https://gitee.com/openLuat/luatos-devlogerrDump.dump(zbuff, type, isDelete) 手动读取异常日志&#xff0c;主要用于用户将日志发送给自己的服务器而不是I…...

低代码平台如何助力国内企业数字化转型?

数字化是什么 数字化&#xff08;Digitalization&#xff09;是将许多复杂多变的信息转变为可以度量的数字、数据&#xff0c;再以这些数字、数据建立起适当的数字化模型&#xff0c;把它们转变为一系列二进制代码&#xff0c;引入计算机内部&#xff0c;进行统一处理&#xf…...

SI3262—高度集成的低功耗SOC芯片

Si3262是一款高度集成的低功耗SOC芯片&#xff0c;其集成了基于RISC-V核的低功耗MCU和工作在13.56MHz的非接触式读写器模块。 MCU模块具有低功耗、Low Pin Count、宽电压工作范围&#xff0c;集成了13/14/15/16位精度的ADC、LVD、UART、SPI、I2C、TIMER、WUP、IWDG、RTC、TSC等…...

除静电离子风机在无尘车间的应用

除静电离子风机在无尘车间中的应用非常广泛&#xff0c;主要是用来控制车间内的静电荷&#xff0c;防止静电对车间内的电子元器件、电路板等敏感部件产生损害。 具体来说&#xff0c;除静电离子风机通常采用电离器产生大量负离子&#xff0c;将车间内的静电荷中和成无害的水蒸气…...

Linux上的Pip和Python升级指南

在Linux系统上&#xff0c;保持Pip和Python版本的最新状态对于顺利进行Python开发至关重要。通过升级Pip和Python&#xff0c;你可以享受到最新的功能、修复的bug以及提升的开发效率。本文将为你提供在Linux上升级Pip和Python的详细指南&#xff0c;助你打造更强大的开发环境。…...

4G工业路由器高效数据传输助力光伏发电站管理

光伏发电站是能源产业中一种利用太阳能技术将光转化为电能的常见设施。随着物联网技术与环保能源的不断进步和应用的普及&#xff0c;光伏发电站的管理也变得更加便捷高效。 光伏发电站结合4G工业路由器实现远程监控管理&#xff0c;并用于采集发电站中的传感器数据和监控信息…...

【音视频笔记】Mediacodec+Muxer生成mp4,浏览器无法播放问题处理

文章目录 背景解决过程曲线修复方案 解决问题根源 背景 最近在测试视频录制功能时发现&#xff0c;AudioRecord MediaCodec MediaMuxer生成的MP4&#xff0c;PC浏览器无法播放 &#xff0c;但是Android、Windows、Mac的播放器应用都能正常播放。虽然不禁想吐槽浏览器视频组件…...

debug过程中,矩阵左乘右乘相关概念梳理

1. 变换点或者变换向量 1.1左乘 矩阵左乘通常是指对”目标点“进行左乘&#xff0c;即: A ′ R ∗ A AR*A A′R∗A 其中&#xff0c;A为原始3维点&#xff0c;表示一个3*1的列向量&#xff0c;R为33的旋转矩阵&#xff0c;A‘为变换后的点 B ′ T ∗ B BT*B B′T∗B 其中…...

Ubuntu 安装Kafka

在本指南中&#xff0c;我们将逐步演示如何在 Ubuntu 22.04 上安装 Apache Kafka。 在大数据中&#xff0c;数以百万计的数据源生成了大量的数据记录流&#xff0c;这些数据源包括社交媒体平台、企业系统、移动应用程序和物联网设备等。如此庞大的数据带来的主要挑战有两个方面…...

洗地机性价比高的是哪款?高性价比洗地机排名

洗地机已成为当下备受欢迎的智能家电之一&#xff0c;但在挑选合适的洗地机时&#xff0c;面对各种新词汇和功能选择&#xff0c;可能会让人感到困惑。因此&#xff0c;为了帮助大家在购买洗地机时不踩坑&#xff0c;我们基于市面上主流品牌的综合分析对比&#xff0c;总结出来…...

安装konga

创建konga数据库 docker run --rm pantsel/konga:latest -c prepare -a postgres -u postgresql://kong:kong{IP}:5432/konga这里要注意docker部署时IP不能直接访问localhost 安装konga docker run -p 1337:1337 \--network kong-net \--name konga \-e "NODE_ENVprodu…...

算法基础之高精度总结

目录 高精度算法分类 高精度加减乘除的异同点 加和乘 相同点 减和除 相同点 不同点 处理前导0的方式 高精度算法分类 分类&#xff1a;加、减、乘、除 其中加减乘都适用于两个数都是高精度&#xff0c;除法因为除数是高精度的话不好用整除的方法&#xff0c;所以除法时…...

oracle TNS Listener 远程投毒漏洞修复

有个客户在等保测评过程&#xff0c;测评公司扫出一个关于oracle的漏洞如下&#xff1a; 客户是RAC环境11.2.0.4&#xff0c;在生产修复漏洞前我做了如下测试验证&#xff1a; 测试环境准备&#xff1a; RAC一套11.2.0.4 实例名dbserver [oraclehisdb1 ~]$ cat /etc/hosts …...

第二章:最新版零基础学习 PYTHON 教程(第一节 - Python 输入/输出–在 Python 中获取输入)

开发人员经常需要与用户交互,以获取数据或提供某种结果。如今,大多数程序都使用对话框来要求用户提供某种类型的输入。而Python为我们提供了两个内置函数来读取键盘输入。 目录 输入(提示) raw_input(提示) 输入函数在 Python 中的工作原理:...