基于遗传算法解决的多仓库多旅行推销员问题(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
我们提出了一个使用遗传算法(GA)解决多仓库的改进型旅行商问题(MTSP)的解决方案。在这个问题中,我们考虑了具有可变数量的销售人员的情况。
我们的算法以找到(近乎)最佳解决方案为目标,该解决方案能满足一些约束条件,如每个城市只被访问一次,每个销售人员从一个仓库开始并结束行程等。
我们的算法是基于约瑟夫·柯克(Joseph Kirk)的MTSPV_GA算法,但我们进行了一些改进。首先,每个销售人员都有一个特定的起始和结束仓库,以确保他们的路线是闭合的。其次,我们引入了两个可能的成本函数,允许我们寻找最小总和的游览长度(与原始版本相似),或者找到最短的游览长度。后者有时被称为MinMaxMDMTSP。
总体而言,我们的算法的关键特点如下:
1. 每个销售人员从一个仓库开始,按照特定的路线访问一组唯一的城市,最后返回起始仓库。
2. 每个城市仅由一个销售人员访问,确保每个城市只被访问一次。
通过使用这个改进的遗传算法解决方案,我们可以找到多仓库MTSP问题的最佳或接近最佳的解决方案。这将有助于优化商业配送、旅行路线规划等各种现实应用场景,并提高效率和效益。我们的研究为该领域的进一步探索和改进提供了有价值的基础。
📚2 运行结果


部分代码:
% Run the GA
global_min = Inf;
total_dist = zeros(1,pop_size);
dist_history = zeros(1,num_iter);
tmp_pop_rte = zeros(8,n);
tmp_pop_brk = cell(8,1);
new_pop_rte = zeros(pop_size,n);
new_pop_brk = cell(pop_size,1);
if show_progpfig = figure('Name','MTSPV_GA | Current Best Solution','Numbertitle','off');
end
iter=0;
iter2go=0;
while iter2go < num_iteriter2go=iter2go+1;iter=iter+1;% Evaluate Each Population Member (Calculate Total Distance)for p = 1:pop_sized = [];p_rte = pop_rte(p,:);p_brk = pop_brk{p};salesmen = length(p_brk)+1;rng=CalcRange(p_brk,n);
% Run the GA
global_min = Inf;
total_dist = zeros(1,pop_size);
dist_history = zeros(1,num_iter);
tmp_pop_rte = zeros(8,n);
tmp_pop_brk = cell(8,1);
new_pop_rte = zeros(pop_size,n);
new_pop_brk = cell(pop_size,1);
if show_prog
pfig = figure('Name','MTSPV_GA | Current Best Solution','Numbertitle','off');
end
iter=0;
iter2go=0;
while iter2go < num_iter
iter2go=iter2go+1;
iter=iter+1;
% Evaluate Each Population Member (Calculate Total Distance)
for p = 1:pop_size
d = [];
p_rte = pop_rte(p,:);
p_brk = pop_brk{p};
salesmen = length(p_brk)+1;
rng=CalcRange(p_brk,n);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]赵赫,杜端甫.遗传算法求解旅行推销员问题时算子的设计与选择[J].系统工程理论与实践, 1998(02):62-65.DOI:10.3321/j.issn:1000-6788.1998.02.012.
[2]吴云,姜麟,刘强.基于并行遗传算法多旅行商问题的求解[J].微型电脑应用, 2011(7):4.DOI:10.3969/j.issn.1007-757X.2011.07.015.
[3]孙文彬,王江.一种基于遗传算法的TSP问题多策略优化求解方法[J].地理与地理信息科学, 2016, 32(4):4.DOI:10.3969/j.issn.1672-0504.2016.04.001.
🌈4 Matlab代码实现
相关文章:
基于遗传算法解决的多仓库多旅行推销员问题(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
微信小程序 工具使用(HBuilderX)
微信小程序 工具使用:HBuilderX 一 HBuilderX 的下载二 工具的配置2.1 工具 --> 设置 --> 运行配置2.1.1 微信开发者工具路径2.1.2 node 运行配置 2.2 插件 工具 --> 插件安装2.2.1 下载插件 三 微信小程序端四 同步运行五 BUG5.1 nodemon在终端无法识别 一 HBuilderX…...
设计模式:观察者模式(C++实现)
观察者模式(Observer Pattern)是一种设计模式,用于定义对象之间的一对多依赖关系,当一个对象(称为主题或可观察者)的状态发生变化时,它的所有依赖对象(称为观察者)都会收…...
【前端打怪升级日志之微前端框架篇】微前端qiankun框架子应用间跳转方法
参考链接qiankun官网:微应用之间如何跳转? 1.主应用、子应用路由都是hash模式 主应用根据 hash 来判断微应用,无需考虑该问题 2.主应用根据path判断子应用 方法实现适用条件参数传递存在问题a标签跳转<a href"/toA"></…...
C语言中的typedef struct用法
在学习数据结构的时候,我经常遇到typedef struct,刚开始感觉很别扭,查阅资料之后才真真理解了。 先从结构体说起。 1、结构体用法 struct Student{int age;char s;}如果要定义一个该结构体变量,就需要:struct Student st1; 有没…...
司徒理财:9.27黄金原油日内多空走势行情操作建议
黄金走势分析: 黄金昨日抵达了此前一直强调的日线布林下轨的1903位置,甚至更低!昨天的空单也是直接获利收割了!现在如果是要继续做空,下方是有日线支撑的,甚至周线的支撑也不远,在1890…...
C++设计模式(Design Patterns)
设计模式主要原则 单一职责原则(Single Responsibility Principle) 实现类要职责单一 里氏替换原则(Liskov Substitution Principle) 不要破坏继承关系 依赖倒置原则(Dependence Inversion Principle) …...
vue点击按钮收缩菜单
问题描述 VUE菜单有一个BUG,当我们点击其它按钮或者首页的时候,已经展示的一级菜单是不会自动收缩的。这个问题也导致很多开发者把一级菜单都换成了二级菜单。 错误展示 错误的效果请看下图。 解决方法 1、寻找菜单文件 因为我使用的是ruoyi的前端框…...
Vue 防止忘记的命令
创建新项目 npm init vuelatest cd <项目名> npm install npm run dev 运行项目 yarn yarn serve 这里如果我用npm install 或者npm run serve会报错,但是新建项目用npm就不会,有大佬知道为什么吗...
APACHE NIFI学习之—RouteOnContent
RouteOnContent 描述: 通过正则表达式匹配输入数据流的内容,然后将输入数据流的副本路由到正则表达式相匹配的输出数据流。 正则表达式作为用户自定义的属性添加,并以该属性名称为输出连线,其值为正则表达式所匹配数据流内容。 当用户定义的属性支持属性表达式语言时,其结…...
【C语言】【结构体的内存对齐】计算结构体内存大小,有图解
计算结构体内存大小,需要用到结构体内存对齐的知识 来段代码看看什么是结构体对齐: #include<stdio.h> struct S1 {char a;char b;int num; }; struct S2 {char a;int num;char b; }; int main() {printf("%zd\n", sizeof(struct S1))…...
Intel 700 800系网卡升级支持WOL UEFI PXE方法
Intel 700 800系网卡默认的NVM版本是不支持UEFI的,升级NVM也不能解决,需要将UEFI driver 包到NVM里。操作步骤如下: 1. 下载Preboot软件包,有Windows和Linux版本,本次使用Linux版本做示例。 Intel Ethernet Connecti…...
vue3 - 使用 xlsx 库将数据导出到 Excel 文件
GitHub Demo 地址 在线预览 xlsx是由SheetJS开发的一个处理excel文件的JavaScript库。它可以读取、编写和操作 Excel 文件 安装xlsx npm install xlsx --save实现一个通过的数据导出工具类 import * as XLSX from xlsx/*** description: 导出excel* param {any} dataList* p…...
机器学习,深度学习
一 、Numpy 1.1 安装numpy 2.2 Numpy操作数组 jupyter扩展插件(用于显示目录) 1、pip install jupyter_contrib_nbextensions -i https://pypi.tuna.tsinghua.edu.cn/simple 2、pip install jupyter_nbextensions_configurator -i https://pypi.tuna.t…...
【性能测试】jmeter连接数据库jdbc
一、下载第三方工具包驱动数据库 1. 因为JMeter本身没有提供链接数据库的功能,所以我们需要借助第三方的工具包来实现。 (有这个jar包之后,jmeter可以发起jdbc请求,没有这个jar包,也有jdbc取样器,但不能…...
蓝桥等考Python组别二级007
第一部分:选择题 1、Python L2 (15分) 下面哪个不是Python的基本数据类型?( ) 布尔型整数型指针型字符串正确答案:C 2、Python L2...
Java如何解决浮点数计算不精确问题
有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准https://blog.zysicyj.top 首发博客地址[1] 面试题手册[2] 系列文章地址[3] 1. 什么是浮点数计算不精确问题? 在 Java 中,浮点数计算不精确问题指的是使用浮点数进…...
一图读懂「五度易链」企业创新服务解决方案,打造卓越营商环境!
“五度易链”紧密围绕园区企业及产业发展需求,基于数据积累和应用,创新企业服务机制,提升企业服务效能,以数字化手段为企业发展纾困解难,赋能企业高质量发展。并帮助园区在运营方面打破数据壁垒,实现数据监…...
软件工程 第一次随堂练习
以下答案是经过人工智能生成,个人理解得出的答案,若有不同见解,请在评论区留言或私信 说明下列需求分别属于下面的哪种类型,为什么? A.业务需求 B.用户需求 C.系统级(功能)需求 D.性能需求 E.质…...
在 Esp32 摄像头上实现边缘脉冲 FOMO 物体检测
轻松在 Esp32 相机上运行边缘脉冲 FOMO 物体检测的世界最佳指南。即使您是初学者 介绍 对象检测是检测图像内感兴趣的对象的任务。直到几年前,由于模型的复杂性和要执行的数学运算的数量惊人,这项任务还需要强大的计算机来完成。 然而,由于像Edge Impulse这样的平台,初学者…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

