leetCode 62.不同路径 动态规划 + 空间复杂度优化
62. 不同路径 - 力扣(LeetCode)
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:

输入:m = 3, n = 7 输出:28
示例 2:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3 输出:28
示例 4:
输入:m = 3, n = 3 输出:6
>>动态规划
机器人从(0,0)位置出发,到(m-1,n-1)终点
按照动规五部曲分析:
1.确定dp数组(dp table)以及下标的含义
dp[i][j] : 表示 从(0,0)出发,到(i,j)有 dp[i][j]条不同的路径
2.确定递推公式
由于机器人每次只能向下或者向右移动一步。所以想要求出dp[i][j],只能从两个方向推导出来,即
dp[i-1][j] 和 dp[i][j-1],也就是说 dp[i][j] = dp[i-1][j] + dp[i][j-1];
3.dp数组的初始化
dp[i][0]一定都是1,因为从(0,0)的位置到(i,0)的路径只有一条;
dp[0][j]一定也都是1,因为从(0,0)的位置到(0,j)的路径只有一条
初始化代码为:
for(int i = 0,i < m;i++) dp[i][0] = 1;
for(int j = 0;j < n;j++) dp[0][j] = 1;
4.确定遍历顺序
dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导出来,那么从左到右一层一层遍历就可以了。可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的
5.举例推导dp数组

class Solution {
public:// 动态规划 时间复杂度:O(m x n) 空间复杂度:O(m x n)int uniquePaths(int m, int n) {vector<vector<int>> dp(m,vector<int>(n,0));for(int i=0;i<m;i++) dp[i][0] = 1;for(int j=0;j<n;j++) dp[0][j] = 1;for(int i=1;i<m;i++) {for(int j=1;j<n;j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
};
- 时间复杂度:O(m * n)
- 空间复杂度:O(m * n)
其实用一个一维数组(也可以理解是滚动数组)也可以,只是不利于理解,但可以优化空间,建议先理解了二维,再理解一维
class Solution {
public:// 动态规划 时间复杂度:O(m x n) 空间复杂度:O(n)int uniquePaths(int m,int n) {vector<int> dp(n);for(int j = 0;j < n;j++) dp[j] = 1;for(int i = 1;i < m;i++) {for(int j = 1;j < n;j++) {dp[j] += dp[j-1];}}return dp[n-1];}
};
- 时间复杂度:O(m * n)
- 空间复杂度:O(n)

来自代码随想录的课堂截图

参考和推荐文章、视频:
代码随想录 (programmercarl.com)
动态规划中如何初始化很重要!| LeetCode:62.不同路径_哔哩哔哩_bilibili
相关文章:
leetCode 62.不同路径 动态规划 + 空间复杂度优化
62. 不同路径 - 力扣(LeetCode) 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” …...
在 .NET 8 Release Candidate 1 中推出 .NET MAUI:质量
作者:David Ortinau 排版:Alan Wang 今天,我们很高兴地宣布 .NET MAUI 在 .NET 8 Release Candidate 1 中已经可用,该版本带有适用于生产应用程序的正式许可证,因此您可以放心地将此版本用于生产环境。我们在 .NET 8 中…...
Spring 学习(八)事务管理
1. 事务 1.1 事务的 ACID 原则 数据库事务(transaction)是访问并可能操作各种数据项的一个数据库操作序列。事务必须满足 ACID 原则——即原子性(Atomicity)、一致性(Consistency)、隔离性(Iso…...
CodeTON Round 6 (Div 1 + Div 2, Rated, Prizes!)(A - E)
CodeTON Round 6 (Div. 1 Div. 2, Rated, Prizes!)(A - E) CodeTON Round 6 (Div. 1 Div. 2, Rated, Prizes!) A. MEXanized Array(分类讨论) 可以发现当 n < k 或者 k > x 1 的时候无法构成 , 其余的时候贪心的用 x 最大化贡献即…...
Spring 源码分析(五)——Spring三级缓存的作用分别是什么?
Spring 的三级缓存是经典面试题,也会看到一些文章讲三级缓存与循环依赖之的关系。那么,三级缓存分别存储的什么呢?他们的作用又分别是什么? 一、一、二级缓存 一级缓存是一个名为 singletonObjects 的 ConcurrentHashMap&#x…...
Django基于类视图实现增删改查
第一步:导入View from django.views import View 第二步:新建这个基类 class CLS_executer(View):db DB_executerdef get(self, request):executer_list list(self.db.objects.all().values())return HttpResponse(json.dumps(executer_list), conte…...
matplotlib绘图实现中文宋体的两种方法(亲测)
方法一:这种方法我没有测试。 第一步 找宋体字体 (win11系统) 2.matplotlib字体目录,如果不知道的话,可以通过以下代码查询: matplotlib.matplotlib_fname() 如果你是Anaconda3 安装的matplotlib&#x…...
非常有用的JavaScript高阶面试技巧!
🍀一、闭包 闭包是指函数中定义的函数,它可以访问外部函数的变量。闭包可以用来创建私有变量和方法,从而保护代码不受外界干扰。 // 例1 function outerFunction() {const privateVariable "私有变量";function innerFunction()…...
windows 安装Linux子系统 Ubuntu 并配置python3
环境说明: Windows 11 Ubuntu 20.04.6 安装步骤以及问题: 1、开启Windows Subsystem for Linux dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart 2、开启虚拟机特性 dism.exe /online /enabl…...
pytorch的pixel_shuffle转tflite文件
torch.pixel_shuffle()是pytorch里面上采样比较常用的方法,但是和tensoflow的depth_to_space不是完全一样的,虽然看起来功能很像,但是细微是有差异的 def tf_pixelshuffle(input, upscale_factor):temp []depth upscale_factor *upscale_f…...
sentinel-dashboard-1.8.0.jar开机自启动脚本
启动阿里巴巴的流控组件控制面板需要运行一个jar包,通常需要运行如下命令: java -server -Xms4G -Xmx4G -Dserver.port8080 -Dcsp.sentinel.dashboard.server127.0.0.1:8080 -Dproject.namesentinel-dashboard -jar sentinel-dashboard-1.8.0.jar &…...
c++堆排序-建堆-插入-删除-排序
本文以大根堆为例,用数组实现,它的nums[0]是数组最大值。 时间复杂度分析: 建堆o(n) 插入删除o(logn) 堆排序O(nlogn) 首先上代码 #include<bits/stdc.h>using namespace std; void down(vector<int>&nums, int idx, i…...
使用代理后pip install 出现ssl错误
window直接设置代理 httphttp://127.0.0.1:7890;httpshttp://127.0.0.1...
护眼灯什么价位的好?最具性价比的护眼台灯推荐
到了晚上光线比较弱,这时候就需要开灯,要是孩子需要近距离看字学习等等,给孩子选择的灯具要特别的重视。护眼灯就是目前颇受学生家长青睐的灯具之一,越来越多的人会购买一个护眼灯给自己的孩子让孩子能够在灯光下学习的时候&#…...
vue event bus 事件总线
vue event bus 事件总线 创建 工程: H:\java_work\java_springboot\vue_study ctrl按住不放 右键 悬着 powershell H:\java_work\java_springboot\js_study\Vue2_3入门到实战-配套资料\01-随堂代码素材\day04\准备代码\08-事件总线-扩展 vue --version vue crea…...
深信服云桌面用户忘记密码后的处理
深信服云桌面用户忘记了密码,分两种情况,一个是忘记了登录深信服云桌面的密码,另外一个是忘记了进入操作系统的密码。 一、忘记了登录深信服云桌面的密码 登录虚拟桌面接入管理系统界面,在用户管理中选择用户后,点击后…...
Cocos Creator3.8 实战问题(一)cocos creator prefab 无法显示内容
问题描述: cocos creator prefab 无法显示内容, 或者只显示一部分内容。 creator编辑器中能看见: 预览时,看不见内容: **问题原因:** prefab node 所在的layer,默认是default。 解决方法&…...
朴素贝叶斯深度解码:从原理到深度学习应用
目录 一、简介贝叶斯定理的历史和重要性定义例子 朴素贝叶斯分类器的应用场景定义例子常见应用场景 二、贝叶斯定理基础条件概率定义例子 贝叶斯公式定义例子 三、朴素贝叶斯算法原理基本构成定义例子 分类过程定义例子 不同变体定义例子 四、朴素贝叶斯的种类高斯朴素贝叶斯&a…...
RUST 每日一省:闭包
Rust中的闭包是一种可以存入外层函数中变量或作为参数传递给其他函数的匿名函数。你可以在一个地方创建闭包,然后在不同的上下文环境中调用该闭包来完成运算。和一般的函数不同,闭包可以从定义它的作用域中捕获值。 语法 闭包由“||”和“{}”组合而成。…...
Ubuntu下文件的解压缩操作:常用zip和unzip
Ubuntu下文件的解\压缩 压缩一个文件夹为zip包,加参数-r: zip -r MyWeb.zip MyWeb需要排除目录里某个文件夹?例如我要去掉node_modules,以显著减小压缩包体积,此时该怎么做? zip -r MyWeb.zip ./MyWeb…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程
基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…...
