当前位置: 首页 > news >正文

Matlab随机数的产生

1、常见分布随机数的产生

1.1 二项分布

在贝努力试验中,某事件A发生的概率为p,重复该实验n次,X表示这n次实验中A发生的次数,则随机变量X服从的概率分布律(概率密度)为

记为    

binopdf(x,n,p)        pdf('bino',x,n,p)

返回参数为n和p的二项分布在x处的密度函数值(概率分布律值)。

>> clear
>> x=1:30;y=binopdf(x,300,0.05);
plot(x,y,'b*')

 binocdf(x,n,p)        cdf('bino',x,n,p)

 返回参数为n和p的二项分布在x处的分布函数值

>> clear
>> x=1:30;y=binocdf(x,300,0.05);
>> plot(x,y,'b+')

icdf('bino',q,n,p) 

  逆分布计算,返回参数为n和p的二项分布的分布函数当概率为q时的x值。

>> p=0.1:0.01:0.99;
>> x=icdf('bino',p,300,0.05);
>> plot(p,x,'r-')

R=binornd(n,p,m1,m2) 

产生m1行m2列的服从参数为n和p的二项分布的随机数据。 

>> R=binornd(10,0.5,3,4)
R =0     6     5     56     6     5     54     5     5     4>> A=binornd(10,0.2,3)
A =1     2     21     3     12     2     2

 1.2 泊松分布

泊松分布描述密度问题:比如显微镜下细菌的数量X,单位人口里感染某疾病的人口数X,单位时间内来到交叉路口的人数X(或车辆数X),单位时间内某手机收到的信息的条数X,等等。

 X的分布律为(密度函数)

记为其中参数λ表示平均值。

poisspdf(x,lambda)           pdf('poiss',x,lambda)

 返回参数为lambda的泊松分布在x处的概率值。

>> clear
>> x=0:30;p=pdf('poiss',x,4);
>> plot(x,p,'b+')

 poisscdf(x,lambda)    cdf('poiss',x,lambda)

 返回参数为lambda的泊松分布在x处的分布函数值:

>> x=1:30;
>> p=cdf('poiss',x,5);
>> plot(x,p,'b*')

 poissrnd(lambda,m1,m2)

  返回m1行m2列的服从参数为lambda的泊松分布的随机数。

>> poissrnd(10,3,4)ans =15    10     9     714    10     7     910     9    14    10
>> poissrnd(10,3)ans =14    11     88    11    135    10    11

1.3 几何分布

在伯努利试验中,每次试验成功的概率为p,失败的概率为q=1-p,0<p<1。首次试验成功发生在第X次,则X的分布律为

geopdf(x,p)

返回服从参数为p的几何分布在x处的概率值。 

>> x=1:20;
>> p=geopdf(x,0.05);
>> plot(x,p,'*')

>> x=1:20;
>> p=cdf('geo',x,0.05);
>> plot(x,p,'+')

返回分布函数值

>> R=geornd(0.2,3,4)
R =0     0     5     00     2     2     89    10     0     0
>> R1=geornd(0.2,3)
R1 =0     8     13     3     00     0     1

1.4 均匀分布(离散,等可能分布)

 

>> x=1:20;
>> p=unidpdf(x,20);f=unidcdf(x,20);
>> plot(x,p,'*',x,f,'+')

 

>> R=unidrnd(20,3,4)
R =1    14     8    1517    16    14     119    15     4     6
>> R=unidrnd(20,3)
R =1    14     12     7     917    20     8

1.5 均匀分布(连续型等可能)

 

>> clear
>> x=1:20;p=unifpdf(x,5,10);
>> p1=unifcdf(x,5,10);
>> plot(x,p,'r*',x,p1,'b-')

>> R=unifrnd(5,10,3,4)
R =8.8276    7.4488    8.5468    8.39858.9760    7.2279    8.7734    8.27555.9344    8.2316    6.3801    5.8131>> R1=unifrnd(5,10,3)
R1 =5.5950    6.7019    8.75637.4918    7.9263    6.27559.7987    6.1191    7.5298

1.6 指数分布(描述“寿命”问题)

>> x=0:0.1:10;
p=exppdf(x,5);
p1=expcdf(x,5);
plot(x,p,'*',x,p1,'-')

>> R=exprnd(5,3,4)
R =1.7900    3.0146    6.7835    1.02720.5776    9.8799    0.8675    7.06270.2078    9.5092    6.8466    0.3668>> R1=exprnd(5,3)
R1 =5.2493    2.4222    0.92678.1330    3.7402    2.67856.9098    5.2255    2.9917

1.7 正态分布

clear
x=-10:0.1:15;
p1=normpdf(x,2,4);p2=normpdf(x,4,4);p3=normpdf(x,6,4);
plot(x,p1,'r-',x,p2,'b-',x,p3,'g-'),
gtext('mu=2'),gtext('mu=4'),gtext('mu=6')

clear
x=-10:0.1:15;
p1=normpdf(x,4,4);p2=normpdf(x,4,9);p3=normpdf(x,4,16);
plot(x,p1,'r-',x,p2,'b-',x,p3,'g-'),
gtext('sig=2'),gtext('sig=3'),gtext('sig=4')

>> clear
>> x=-10:0.1:10;
>> p=normcdf(x,2,9);
>> plot(x,p,'-'),gtext('分布函数')

>> p=[0.01,0.05,0.1,0.9,0.05,0.975,0.9972];
>> x=icdf('norm',p,0,1)
x =
-2.3263 -1.6449 -1.2816 
1.2816 -1.6449 1.96 2.7703

x=icdf('norm',p,0,1)

 计算标准正态分布的分布函数的反函数值,即知道概率情况下,返回相应的分位数。

产生正态分布的随机数

>> R=normrnd(0,1,3,4)
R =1.5877    0.8351   -1.1658    0.7223-0.8045   -0.2437   -1.1480    2.58550.6966    0.2157    0.1049   -0.6669
>> R1=normrnd(0,1,3)
R1 =0.1873   -0.4390   -0.8880-0.0825   -1.7947    0.1001-1.9330    0.8404   -0.5445

相关文章:

Matlab随机数的产生

1、常见分布随机数的产生 1.1 二项分布 在贝努力试验中&#xff0c;某事件A发生的概率为p&#xff0c;重复该实验n次&#xff0c;X表示这n次实验中A发生的次数&#xff0c;则随机变量X服从的概率分布律&#xff08;概率密度&#xff09;为 记为 binopdf(x,n,p) p…...

计算机网络 第四章:网络层

一.网络层概述 1.1分组转发和路由选择 网络层的主要任务就是将分组从源主机经过多个网络和多段链路传输到目的主机&#xff0c;可以将该任务划分为分组转发和路由选择两种重要的功能。 如图所示&#xff1a;这些异构型网络如果只是需要各自内部通信&#xff0c;那它们只需要实…...

分享一个docker无法启动的小问题

准备看看docker服务怎么样 [rootlocalhost ~]# docker ps Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running? 这一看就是docker的进程崩了&#xff0c;我们启动下进程 [rootlocalhost ~]# systemctl start docker Faile…...

Linux 安全 - Capabilities机制

文章目录 前言一、简介二、Capabilities list2.1 POSIX-draft defined capabilities2.2 Linux-specific capabilities 三、 Past and current implementation四、Thread capability sets五、File capabilities六、Transformation of capabilities during execve()七、Capabilit…...

分布式搜索引擎es-3

文章目录 数据聚合聚合的种类RestAPI实现聚合 数据聚合 什么是聚合&#xff1f; 聚合可以让我们极其方便的实现对数据的统计、分析、运算。例如&#xff1a; 什么品牌的手机最受欢迎&#xff1f;这些手机的平均价格、最高价格、最低价格&#xff1f;这些手机每月的销售情况如…...

Matlab坐标轴标签中文设置宋体

对y坐标输出中文宋体 新罗马字符 x[1,2,3,4,5,6,7]; plot(x) ylabel(\fontname{宋体}\fontsize{20}长度\fontname{Times New Roman}\fontsize{10} (μm))可以灵活设置字体和大小,其图片如下图所示 也可以对全图的文字设置同一个字体 set(gca,FontSize,9,Fontname, Times New…...

做一个贪吃蛇小游戏happy一下

直接Vue上代码 <template><div><div>贪吃蛇</div><canvas id"canvas" width"400" height"400"></canvas></div> </template><script> export default {data() {return {ctx: null,inter…...

opencv形态学-膨胀

opencv形态学-膨胀 膨胀就是取每一个位置结构元邻域内最大值作为该位置的输出灰度值&#xff1b; 膨胀是取邻域内最大值&#xff0c;那么显然膨胀后图像整体亮度会比原先要高&#xff0c;图像中亮的物体尺寸会变大&#xff0c;相反暗的尺寸会减小&#xff0c;甚至是消失 结构元…...

玄子Share 设计模式 GOF 全23种 + 七大设计原则

玄子Share 设计模式 GOF 全23种 七大设计原则 前言&#xff1a; 此文主要内容为 面向对象七大设计原则&#xff08;OOD Principle&#xff09;GOF&#xff08;Gang Of Four&#xff09;23种设计模式拓展的两个设计模式 简单工厂模式&#xff08;Simple Factory Pattern&#x…...

单链表操作 C实现

struct LNode { //定义一个节点 int data; //数据域 struct LNode *next; //指针域 }; 0.初始化 typedef sturct LNode{ //定义单链表结点类型 int date ; //每个结点存放一个数据元素struct LNode *next; //指针指向下…...

WordPress主题网站首页添加好看的四格小工具教程

直接到网站根目录创建一个css文件(文件名:sige.css),文件名可自定义(注意文件名一致) <link rel"stylesheet" href"你的网站/sige.css" type"text/css" > 然后在header.php模板最上方添加引入代码 也可自定义HTML里添加css代码最上方写…...

unittest自动化测试框架讲解以及实战

为什么要学习unittest 按照测试阶段来划分&#xff0c;可以将测试分为单元测试、集成测试、系统测试和验收测试。单元测试是指对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作&#xff0c;通常指函数或者类&#xff0c;一般是开发完成的。 单元…...

数学建模之Matlab基础操作

作者由于后续课程也要学习Matlab&#xff0c;并且之前也进行了一些数学建模的练习&#xff08;虽然是论文手&#xff09;&#xff0c;所以花了几天零碎时间学习Matlab的基础操作&#xff0c;特此整理。 基本运算 a55 %加法&#xff0c;同理减法 b2^3 %立方 c5*2 %乘法 x 1; …...

【Nuxt】04 Nuxt2-SEO: sitemap.xml、seo优化、robots.txt

1 SiteMap设置 环境准备 注意生成sitemap依赖于nuxtjs/sitemap&#xff0c;并且需要用axios进行请求&#xff0c;不要使用nuxtjs/axios&#xff0c;不然会报错 sitemap.xml配置 在nuxt.config.js中配置下面的内容 npm install nuxtjs/sitemap npm install axios在static/s…...

VMware VSAN 入门

一、虚拟化的存储 1.1、对于数据中心来说最重要的是数据&#xff0c;而承载数据的设备就是存储设备&#xff08;Storage&#xff09; 1.2、物理服务器的本地存储阵列 与 虚拟化服务器的本地存储阵列 对比 1.3、避免单台服务器故障的虚拟化高级特性&#xff1a;vSphere HA技术 …...

【设计模式】备忘录模式

文章目录 1.备忘录模式定义2.备忘录模式的角色3.备忘录模式实现3.1.场景说明3.2.结构类图3.3.代码实现 4.备忘录模式优缺点5.备忘录模式适用场景6.备忘录模式总结 主页传送门&#xff1a;&#x1f481; 传送 1.备忘录模式定义 备忘录&#xff08;Memento Pattern&#xff09;模…...

vue3+elementUiPlus表格导出功能

1.下载需要的组件包 npm install file-saver xlsx 2.页面中导入 import FileSaver from file-saver import * as XLSX from xlsx; 3.页面中的表格加一个id <el-table :data"tableData" ref"multipleTableRef" style"width…...

专题五:优先级队列

"你了解我&#xff0c;最干净的轮廓&#xff0c; 握住小小风车和放肆的梦~" 堆是一个不错的数据结构&#xff0c;而在计算机中&#xff0c;无法表示二叉分支结构&#xff0c;因此我们经常会看到使用线性表来作为堆的存储容器。在接触堆的时候&#xff0c;我们是把它…...

游戏设计模式专栏(一):工厂方法模式

引言 大家好&#xff0c;我是亿元程序员&#xff0c;一位有着8年游戏行业经验的主程。 本系列是《和8年游戏主程一起学习设计模式》&#xff0c;让糟糕的代码在潜移默化中升华&#xff0c;欢迎大家关注分享收藏订阅。 在游戏开发中&#xff0c;代码的组织和结构对于项目的可…...

element中使用el-steps 进度条效果demo(整理)

<template><div class"margin-top20"><!-- align-center 不要居中就去掉 --><!-- process-status 这几个参数值&#xff1a;改变颜色 wait / process / finish / error / --><!-- active 到第几个是绿色 --><el-steps :space&qu…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...