【NLP的python库(03/4) 】: 全面概述
一、说明
Python 对自然语言处理库有丰富的支持。从文本处理、标记化文本并确定其引理开始,到句法分析、解析文本并分配句法角色,再到语义处理,例如识别命名实体、情感分析和文档分类,一切都由至少一个库提供。那么,你从哪里开始呢?
本文的目标是为每个核心 NLP 任务提供相关 Python 库的概述。这些库通过简要说明进行了解释,并给出了 NLP 任务的具体代码片段。继续我对 NLP 博客文章的介绍,本文仅显示用于文本处理、句法和语义分析以及文档语义等核心 NLP 任务的库。此外,在 NLP 实用程序类别中,还提供了用于语料库管理和数据集的库。
涵盖以下库:
- NLTK
- TextBlob
- Spacy
- SciKit Learn
- Gensim
二、核心自然语言处理任务
2.1 文本处理
任务:标记化、词形还原、词干提取、部分标记
NLTK 库为文本处理提供了一个完整的工具包,包括标记化、词干提取和词形还原。
from nltk.tokenize import sent_tokenize, word_tokenizeparagraph = '''Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding. AI research has tried and discarded many different approaches, including simulating the brain, modeling human problem solving, formal logic, large databases of knowledge, and imitating animal behavior. In the first decades of the 21st century, highly mathematical and statistical machine learning has dominated the field, and this technique has proved highly successful, helping to solve many challenging problems throughout industry and academia.'''sentences = []
for sent in sent_tokenize(paragraph):sentences.append(word_tokenize(sent))sentences[0]
# ['Artificial', 'intelligence', 'was', 'founded', 'as', 'an', 'academic', 'discipline'
使用 TextBlob,支持相同的文本处理任务。它与NLTK的区别在于更高级的语义结果和易于使用的数据结构:解析句子已经生成了丰富的语义信息。
from textblob import TextBlobtext = '''
Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding. AI research has tried and discarded many different approaches, including simulating the brain, modeling human problem solving, formal logic, large databases of knowledge, and imitating animal behavior. In the first decades of the 21st century, highly mathematical and statistical machine learning has dominated the field, and this technique has proved highly successful, helping to solve many challenging problems throughout industry and academia.
'''blob = TextBlob(text)blob.ngrams()
#[WordList(['Artificial', 'intelligence', 'was']),
# WordList(['intelligence', 'was', 'founded']),
# WordList(['was', 'founded', 'as']),blob.tokens
# WordList(['Artificial', 'intelligence', 'was', 'founded', 'as', 'an', 'academic', 'discipline', 'in', '1956', ',', 'and', 'in',
借助现代 NLP 库 Spacy,文本处理只是主要语义任务的丰富管道中的第一步。与其他库不同,它需要首先加载目标语言的模型。最近的模型不是启发式的,而是人工神经网络,尤其是变压器,它提供了更丰富的抽象,可以更好地与其他模型相结合。
import spacy
nlp = spacy.load('en_core_web_lg')text = '''
Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding. AI research has tried and discarded many different approaches, including simulating the brain, modeling human problem solving, formal logic, large databases of knowledge, and imitating animal behavior. In the first decades of the 21st century, highly mathematical and statistical machine learning has dominated the field, and this technique has proved highly successful, helping to solve many challenging problems throughout industry and academia.
'''doc = nlp(text)
tokens = [token for token in doc]print(tokens)
# [Artificial, intelligence, was, founded, as, an, academic, discipline
2.2 文本语法
任务:解析、词性标记、名词短语提取
从 NLTK 开始,支持所有语法任务。它们的输出作为 Python 原生数据结构提供,并且始终可以显示为简单的文本输出。
from nltk.tokenize import word_tokenize
from nltk import pos_tag, RegexpParser# Source: Wikipedia, Artificial Intelligence, https://en.wikipedia.org/wiki/Artificial_intelligence
text = '''
Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding. AI research has tried and discarded many different approaches, including simulating the brain, modeling human problem solving, formal logic, large databases of knowledge, and imitating animal behavior. In the first decades of the 21st century, highly mathematical and statistical machine learning has dominated the field, and this technique has proved highly successful, helping to solve many challenging problems throughout industry and academia.
'''pos_tag(word_tokenize(text))
# [('Artificial', 'JJ'),
# ('intelligence', 'NN'),
# ('was', 'VBD'),
# ('founded', 'VBN'),
# ('as', 'IN'),
# ('an', 'DT'),
# ('academic', 'JJ'),
# ('discipline', 'NN'),# noun chunk parser
# source: https://www.nltk.org/book_1ed/ch07.html
grammar = "NP: {<DT>?<JJ>*<NN>}"
parser = RegexpParser(grammar)parser.parse(pos_tag(word_tokenize(text)))
#(S
# (NP Artificial/JJ intelligence/NN)
# was/VBD
# founded/VBN
# as/IN
# (NP an/DT academic/JJ discipline/NN)
# in/IN
# 1956/CD
文本 Blob 在处理文本时立即提供 POS 标记。使用另一种方法,创建包含丰富语法信息的解析树。
from textblob import TextBlobtext = '''
Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding. AI research has tried and discarded many different approaches, including simulating the brain, modeling human problem solving, formal logic, large databases of knowledge, and imitating animal behavior. In the first decades of the 21st century, highly mathematical and statistical machine learning has dominated the field, and this technique has proved highly successful, helping to solve many challenging problems throughout industry and academia.
'''blob = TextBlob(text)
blob.tags
#[('Artificial', 'JJ'),
# ('intelligence', 'NN'),
# ('was', 'VBD'),
# ('founded', 'VBN'),blob.parse()
# Artificial/JJ/B-NP/O
# intelligence/NN/I-NP/O
# was/VBD/B-VP/O
# founded/VBN/I-VP/O
Spacy 库使用转换器神经网络来支持其语法任务。
import spacy
nlp = spacy.load('en_core_web_lg')for token in nlp(text):print(f'{token.text:<20}{token.pos_:>5}{token.tag_:>5}')#Artificial ADJ JJ
#intelligence NOUN NN
#was AUX VBD
#founded VERB VBN
2.3 文本语义
任务:命名实体识别、词义消歧、语义角色标记
语义分析是NLP方法开始不同的领域。使用 NLTK 时,生成的语法信息将在字典中查找以识别例如命名实体。因此,在处理较新的文本时,可能无法识别实体。
from nltk import download as nltk_download
from nltk.tokenize import word_tokenize
from nltk import pos_tag, ne_chunknltk_download('maxent_ne_chunker')
nltk_download('words')# Source: Wikipedia, Spacecraft, https://en.wikipedia.org/wiki/Spacecraft
text = '''
As of 2016, only three nations have flown crewed spacecraft: USSR/Russia, USA, and China. The first crewed spacecraft was Vostok 1, which carried Soviet cosmonaut Yuri Gagarin into space in 1961, and completed a full Earth orbit. There were five other crewed missions which used a Vostok spacecraft. The second crewed spacecraft was named Freedom 7, and it performed a sub-orbital spaceflight in 1961 carrying American astronaut Alan Shepard to an altitude of just over 187 kilometers (116 mi). There were five other crewed missions using Mercury spacecraft.
'''pos_tag(word_tokenize(text))
# [('Artificial', 'JJ'),
# ('intelligence', 'NN'),
# ('was', 'VBD'),
# ('founded', 'VBN'),
# ('as', 'IN'),
# ('an', 'DT'),
# ('academic', 'JJ'),
# ('discipline', 'NN'),# noun chunk parser
# source: https://www.nltk.org/book_1ed/ch07.html
print(ne_chunk(pos_tag(word_tokenize(text))))
# (S
# As/IN
# of/IN
# [...]
# (ORGANIZATION USA/NNP)
# [...]
# which/WDT
# carried/VBD
# (GPE Soviet/JJ)
# cosmonaut/NN
# (PERSON Yuri/NNP Gagarin/NNP)
Spacy 库使用的转换器模型包含一个隐式的“时间戳”:它们的训练时间。这决定了模型使用了哪些文本,因此模型能够识别哪些文本。
import spacy
nlp = spacy.load('en_core_web_lg')text = '''
As of 2016, only three nations have flown crewed spacecraft: USSR/Russia, USA, and China. The first crewed spacecraft was Vostok 1, which carried Soviet cosmonaut Yuri Gagarin into space in 1961, and completed a full Earth orbit. There were five other crewed missions which used a Vostok spacecraft. The second crewed spacecraft was named Freedom 7, and it performed a sub-orbital spaceflight in 1961 carrying American astronaut Alan Shepard to an altitude of just over 187 kilometers (116 mi). There were five other crewed missions using Mercury spacecraft.
'''doc = nlp(paragraph)
for token in doc.ents:print(f'{token.text:<25}{token.label_:<15}')# 2016 DATE
# only three CARDINAL
# USSR GPE
# Russia GPE
# USA GPE
# China GPE
# first ORDINAL
# Vostok 1 PRODUCT
# Soviet NORP
# Yuri Gagarin PERSON
2.4 文档语义
任务:文本分类、主题建模、情感分析、毒性识别
情感分析也是NLP方法差异不同的任务:在词典中查找单词含义与在单词或文档向量上编码的学习单词相似性。
TextBlob 具有内置的情感分析,可返回文本中的极性(整体正面或负面内涵)和主观性(个人意见的程度)。
from textblob import TextBlobtext = '''
Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding. AI research has tried and discarded many different approaches, including simulating the brain, modeling human problem solving, formal logic, large databases of knowledge, and imitating animal behavior. In the first decades of the 21st century, highly mathematical and statistical machine learning has dominated the field, and this technique has proved highly successful, helping to solve many challenging problems throughout industry and academia.
'''blob = TextBlob(text)
blob.sentiment
#Sentiment(polarity=0.16180290297937355, subjectivity=0.42155589508530683)
Spacy 不包含文本分类功能,但可以作为单独的管道步骤进行扩展。下面的代码很长,包含几个 Spacy 内部对象和数据结构 - 以后的文章将更详细地解释这一点。
## train single label categorization from multi-label dataset
def convert_single_label(dataset, filename):db = DocBin()nlp = spacy.load('en_core_web_lg')for index, fileid in enumerate(dataset):cat_dict = {cat: 0 for cat in dataset.categories()}cat_dict[dataset.categories(fileid).pop()] = 1doc = nlp(get_text(fileid))doc.cats = cat_dictdb.add(doc)db.to_disk(filename)## load trained model and apply to text
nlp = spacy.load('textcat_multilabel_model/model-best')text = dataset.raw(42)doc = nlp(text)estimated_cats = sorted(doc.cats.items(), key=lambda i:float(i[1]), reverse=True)print(dataset.categories(42))
# ['orange']print(estimated_cats)
# [('nzdlr', 0.998894989490509), ('money-supply', 0.9969857335090637), ... ('orange', 0.7344251871109009),
SciKit Learn 是一个通用的机器学习库,提供许多聚类和分类算法。它仅适用于数字输入,因此需要对文本进行矢量化,例如使用 GenSims 预先训练的词向量,或使用内置的特征矢量化器。仅举一个例子,这里有一个片段,用于将原始文本转换为单词向量,然后将 KMeans分类器应用于它们。
from sklearn.feature_extraction import DictVectorizer
from sklearn.cluster import KMeansvectorizer = DictVectorizer(sparse=False)
x_train = vectorizer.fit_transform(dataset['train'])kmeans = KMeans(n_clusters=8, random_state=0, n_init="auto").fit(x_train)print(kmeans.labels_.shape)
# (8551, )print(kmeans.labels_)
# [4 4 4 ... 6 6 6]
最后,Gensim是一个专门用于大规模语料库的主题分类的库。以下代码片段加载内置数据集,矢量化每个文档的令牌,并执行聚类分析算法 LDA。仅在 CPU 上运行时,这些最多可能需要 15 分钟。
# source: https://radimrehurek.com/gensim/auto_examples/tutorials/run_lda.html, https://radimrehurek.com/gensim/auto_examples/howtos/run_downloader_api.htmlimport logging
import gensim.downloader as api
from gensim.corpora import Dictionary
from gensim.models import LdaModellogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)docs = api.load('text8')
dictionary = Dictionary(docs)
corpus = [dictionary.doc2bow(doc) for doc in docs]_ = dictionary[0]
id2word = dictionary.id2token# Define and train the model
model = LdaModel(corpus=corpus,id2word=id2word,chunksize=2000,alpha='auto',eta='auto',iterations=400,num_topics=10,passes=20,eval_every=None
)print(model.num_topics)
# 10print(model.top_topics(corpus)[6])
# ([(4.201401e-06, 'done'),
# (4.1998064e-06, 'zero'),
# (4.1478743e-06, 'eight'),
# (4.1257395e-06, 'one'),
# (4.1166854e-06, 'two'),
# (4.085097e-06, 'six'),
# (4.080696e-06, 'language'),
# (4.050306e-06, 'system'),
# (4.041121e-06, 'network'),
# (4.0385708e-06, 'internet'),
# (4.0379923e-06, 'protocol'),
# (4.035399e-06, 'open'),
# (4.033435e-06, 'three'),
# (4.0334166e-06, 'interface'),
# (4.030141e-06, 'four'),
# (4.0283044e-06, 'seven'),
# (4.0163245e-06, 'no'),
# (4.0149207e-06, 'i'),
# (4.0072555e-06, 'object'),
# (4.007036e-06, 'programming')],
三、公用事业
3.1 语料库管理
NLTK为JSON格式的纯文本,降价甚至Twitter提要提供语料库阅读器。它通过传递文件路径来创建,然后提供基本统计信息以及迭代器以处理所有找到的文件。
from nltk.corpus.reader.plaintext import PlaintextCorpusReadercorpus = PlaintextCorpusReader('wikipedia_articles', r'.*\.txt')print(corpus.fileids())
# ['AI_alignment.txt', 'AI_safety.txt', 'Artificial_intelligence.txt', 'Machine_learning.txt', ...]print(len(corpus.sents()))
# 47289print(len(corpus.words()))
# 1146248
Gensim 处理文本文件以形成每个文档的词向量表示,然后可用于其主要用例主题分类。文档需要由包装遍历目录的迭代器处理,然后将语料库构建为词向量集合。但是,这种语料库表示很难外部化并与其他库重用。以下片段是上面的摘录 - 它将加载 Gensim 中包含的数据集,然后创建一个基于词向量的表示。
import gensim.downloader as api
from gensim.corpora import Dictionarydocs = api.load('text8')
dictionary = Dictionary(docs)
corpus = [dictionary.doc2bow(doc) for doc in docs]print('Number of unique tokens: %d' % len(dictionary))
# Number of unique tokens: 253854print('Number of documents: %d' % len(corpus))
# Number of documents: 1701
3.2 数据
NLTK提供了几个即用型数据集,例如路透社新闻摘录,欧洲议会会议记录以及古腾堡收藏的开放书籍。请参阅完整的数据集和模型列表。
from nltk.corpus import reutersprint(len(reuters.fileids()))
#10788print(reuters.categories()[:43])
# ['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa', 'coconut', 'coconut-oil', 'coffee', 'copper', 'copra-cake', 'corn', 'cotton', 'cotton-oil', 'cpi', 'cpu', 'crude', 'dfl', 'dlr', 'dmk', 'earn', 'fuel', 'gas', 'gnp', 'gold', 'grain', 'groundnut', 'groundnut-oil', 'heat', 'hog', 'housing', 'income', 'instal-debt', 'interest', 'ipi', 'iron-steel', 'jet', 'jobs', 'l-cattle', 'lead', 'lei', 'lin-oil']
SciKit Learn包括来自新闻组,房地产甚至IT入侵检测的数据集,请参阅完整列表。这是后者的快速示例。
from sklearn.datasets import fetch_20newsgroupsdataset = fetch_20newsgroups()
dataset.data[1]
# "From: guykuo@carson.u.washington.edu (Guy Kuo)\nSubject: SI Clock Poll - Final Call\nSummary: Final call for SI clock reports\nKeywords: SI,acceleration,clock,upgrade\nArticle-I.D.: shelley.1qvfo9INNc3s\nOrganization: University of Washington\nLines: 11\nNNTP-Posting-Host: carson.u.washington.edu\n\nA fair number of brave souls who upgraded their SI clock oscillator have\nshared their experiences for this poll.
四、结论
对于 Python 中的 NLP 项目,存在大量的库选择。为了帮助您入门,本文提供了 NLP 任务驱动的概述,其中包含紧凑的库解释和代码片段。从文本处理开始,您了解了如何从文本创建标记和引理。继续语法分析,您学习了如何生成词性标签和句子的语法结构。到达语义,识别文本中的命名实体以及文本情感也可以在几行代码中解决。对于语料库管理和访问预结构化数据集的其他任务,您还看到了库示例。总而言之,本文应该让你在处理核心 NLP 任务时为下一个 NLP 项目提供一个良好的开端。
相关文章:
【NLP的python库(03/4) 】: 全面概述
一、说明 Python 对自然语言处理库有丰富的支持。从文本处理、标记化文本并确定其引理开始,到句法分析、解析文本并分配句法角色,再到语义处理,例如识别命名实体、情感分析和文档分类,一切都由至少一个库提供。那么,你…...
面试理论篇三
关于异常机制篇 异常描述 目录 关于异常机制篇异常描述 注:自用 1,Java中的异常分为哪几类?各自的特点是什么? Java中的异常 可以分为 可查异常(Checked Exception)、运行时异常(Runtime Exception) 和 错误(Error)三类。可查异…...
ShardingSphere|shardingJDBC - 在使用数据分片功能情况下无法配置读写分离
问题场景: 最近在学习ShardingSphere,跟着教程一步步做shardingJDBC,但是想在开启数据分片的时候还能使用读写分离,一直失败,开始是一直能读写分离,但是分偏见规则感觉不生效,一直好像是走不进去…...
char s1[len + 1]; 报错说需要常量?
在C中,字符数组的大小必须是常量表达式,不能使用变量 len 作为数组大小。为了解决这个问题,你可以使用 new 运算符动态分配字符数组的内存,但在使用完后需要手动释放。 还有啥是只能这样的,还是说所有的动态都需要new&…...
【Linux】CentOS-6.8超详细安装教程
文章目录 1.CentOS介绍:2.必要准备:3.创建虚拟机:4 .安装系统 1.CentOS介绍: CentOS是一种基于开放源代码的Linux操作系统,它以其稳定性、安全性和可靠性而闻名,它有以下特点: 开源性࿱…...
【Java 进阶篇】MySQL启动与关闭、目录结构以及 SQL 相关概念
MySQL 服务启动与关闭 MySQL是一个常用的关系型数据库管理系统,通过启动和关闭MySQL服务,可以控制数据库的运行状态。本节将介绍如何在Windows和Linux系统上启动和关闭MySQL服务。 在Windows上启动和关闭MySQL服务 启动MySQL服务 在Windows上&#x…...
Android 11.0 mt6771新增分区功能实现一
1.前言 在11.0的系统开发中,在对某些特殊模块中关于数据的存储方面等需要新增分区来保存, 所以就需要在系统分区新增分区,接下来就来实现这个功能 2.mt6771新增分区功能实现一的核心类 build/make/core/Makefile build/make/core/board_config.mk build/make/core/config…...
LiveData简单使用
1.LiveData是基于观察者模式,可以用于处理消息的订阅分发的组件。 LiveData组件有以下特性: 1) 可以感知Activity、Fragment生命周期变化,因为他把自己注册成LifecycleObserver。 2) LiveData可以注册多个观察者,只有数据…...
手动实现Transformer
Transformer和BERT可谓是LLM的基础模型,彻底搞懂极其必要。Transformer最初设想是作为文本翻译模型使用的,而BERT模型构建使用了Transformer的部分组件,如果理解了Transformer,则能很轻松地理解BERT。 一.Transformer模型架构 1…...
leetcode456 132 Pattern
给定数组,找到 i < j < k i < j < k i<j<k,使得 n u m s [ i ] < n u m s [ k ] < n u m s [ j ] nums[i] < nums[k] < nums[j] nums[i]<nums[k]<nums[j] 最开始肯定想着三重循环,时间复杂度 O ( n 3 )…...
WordPress外贸建站Astra免费版教程指南(2023)
在WordPress的外贸建站主题中,有许多备受欢迎的主题,如AAvada、Astra、Hello、Kadence等最佳WordPress外贸主题,它们都能满足建站需求并在市场上广受认可。然而,今天我要介绍的是一个不断颠覆建站人员思维的黑马——Astra主题。 …...
Vue之ElementUI实现登陆及注册
目录 编辑 前言 一、ElementUI简介 1. 什么是ElementUI 2. 使用ElementUI的优势 3. ElementUI的应用场景 二、登陆注册前端界面开发 1. 修改端口号 2. 下载ElementUI所需的js依赖 2.1 添加Element-UI模块 2.2 导入Element-UI模块 2.3 测试Element-UI是否能用 3.编…...
网络代理的多面应用:保障隐私、增强安全和数据获取
随着互联网的发展,网络代理在网络安全、隐私保护和数据获取方面变得日益重要。本文将深入探讨网络代理的多面应用,特别关注代理如何保障隐私、增强安全性以及为数据获取提供支持。 1. 代理服务器的基本原理 代理服务器是一种位于客户端和目标服务器之间…...
字节一面:深拷贝浅拷贝的区别?如何实现一个深拷贝?
前言 最近博主在字节面试中遇到这样一个面试题,这个问题也是前端面试的高频问题,我们经常需要对后端返回的数据进行处理才能渲染到页面上,一般我们会讲数据进行拷贝,在副本对象里进行处理,以免玷污原始数据,…...
协议-TCP协议-基础概念02-TCP握手被拒绝-内核参数-指数退避原则-TCP窗口-TCP重传
协议-TCP协议-基础概念02-TCP握手被拒绝-TCP窗口 参考来源: 《极客专栏-网络排查案例课》 TCP连接都是TCP协议沟通的吗? 不是 如果服务端不想接受这次握手,它会怎么做呢? 内核参数中与TCP重试有关的参数(两个) -net.ipv4.tc…...
PDF文件压缩软件 PDF Squeezer mac中文版软件特点
PDF Squeezer mac是一款macOS平台上的PDF文件压缩软件,可以帮助用户快速地压缩PDF文件,从而减小文件大小,使其更容易共享、存储和传输。PDF Squeezer使用先进的压缩算法,可以在不影响文件质量的情况下减小文件大小。 PDF Squeezer…...
VS+Qt+opencascade三维绘图stp/step/igs/stl格式图形读取显示
程序示例精选 VSQtopencascade三维绘图stp/step/igs/stl格式图形读取显示 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对《VSQtopencascade三维绘图stp/step/igs/stl格式图形读取显示》编写…...
如何在Ubuntu中切换root用户和普通用户
问题 大家在新装Ubuntu之后,有没有发现自己进入不了root用户,su root后输入密码根本进入不了,这怎么回事呢? 打开Ubuntu命令终端; 输入命令:su root; 回车提示输入密码; 提示&…...
从零开始之了解电机及其控制(10)空间矢量理论
与一维数字转子位置不同,电流和电压都是二维的。可以在矩形笛卡尔平面中考虑这些尺寸。 用旋转角度和幅度来描述向量 虽然电流命令的幅度和施加的电压是进入控制器的误差项的函数,它们施加的角度是 d-q 轴方向的函数,因此也是转子位置的函数。…...
PSINS工具箱学习(一)下载安装初始化、SINS-GPS组合导航仿真、习惯约定与常用变量符号、数据导入转换、绘图显示
原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning 文章目录 一、前言二、相关资源三、下载安装初始化1、下载PSINSyymmdd.rar工具箱文件2、解压文件3、初始化4、启动工具箱导览 四、习惯约定与常用变量符号1…...
国庆day1---消息队列实现进程之间通信方式代码,现象
snd: #include <myhead.h>#define ERR_MSG(msg) do{\fprintf(stderr,"__%d__:",__LINE__);\perror(msg);\ }while(0)typedef struct{ long msgtype; //消息类型char data[1024]; //消息正文 }Msg;#define SIZE sizeof(Msg)-sizeof(long)int main…...
wdb_2018_2nd_easyfmt
wdb_2018_2nd_easyfmt Arch: i386-32-little RELRO: Partial RELRO Stack: No canary found NX: NX enabled PIE: No PIE (0x8047000)32位只开了NX 这题get到一点小知识(看我exp就知道了 int __cdecl __noreturn main(int argc, const char…...
服务器数据恢复-zfs下raidz多块磁盘离线导致服务器崩溃的数据恢复案例
服务器数据恢复环境: 一台服务器共配备32块硬盘,组建了4组RAIDZ,Windows操作系统zfs文件系统。 服务器故障: 服务器在运行过程中突然崩溃,经过初步检测检测没有发现服务器存在物理故障,重启服务器后故障依…...
云服务器 CentOS7 操作系统上安装Jpress (Tomcat 部署项目)
1、xShell 和 xftp 下载安装(略) https://www.xshell.com/zh/free-for-home-school/2、xftp 连接云服务器 xftp 新建连接 3、JDK 压缩包下载 下载 jdk1.8 注:此处 CentOS7 是64位,所以下载的是:Linux x64…...
【Linux】完美解决ubuntu18.04下vi不能使用方向键和退格键
今天在刚安装完ubuntu18.04,发现在使用vi命令配置文件时使用方向键并不能移动光标,而是出现一堆奇怪的英文字母,使用退格键也不能正常地删除内容,用惯了CentOS的我已经感觉到ubuntu没有centos用着丝滑,但是没办法&…...
Android studio “Layout Inspector“工具在Android14 userdebug设备无法正常使用
背景描述 做rom开发的都知道,“Layout Inspector”和“Attach Debugger to Android Process”是studio里很好用的工具,可以用来查看布局、调试系统进程(比如setting、launcher、systemui)。 问题描述 最进刚开始一个Android 14…...
Kafka(一)使用Docker Compose安装单机Kafka以及Kafka UI
文章目录 Kafka中涉及到的术语Kafka镜像选择Kafka UI镜像选择Docker Compose文件Kafka配置项说明KRaft vs Zookeeper和KRaft有关的配置关于Controller和Broker的概念解释Listener的各种配置 Kafka UI配置项说明 测试Kafka集群Docker Compose示例配置 Kafka中涉及到的术语 对于…...
网络知识点之-MSTP平台
本文章已收录至《网络》专栏,点进右上角专栏图标可访问本专栏 多业务传送平台(MSTP)技术是指基于SDH平台,同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务传送平台。 MSTP充分利用SDH技术,特别是保护恢复…...
Azure AD混合部署,通过 Intune 管理设备,实现条件访问
需求: 公司要求,非公司设备不允许使用 邮箱,Teams等O365服务。 我们可以通过 Intune 中的 "条件访问" 解决这个问题。 一、设备同步到 AAD 1、配置 AAD Connect 2、选择 3、下一步 4、配置本地 企业管理员 5、配置成功 二、设备…...
2023/09/30
1. 判断字符串中是否包含某个字符串的三种方法 三个方法都是String对象的实例方法 方法一:indexOf() let str "123" console.log(str.indexof(3) ! -1); // trueindefOf()方法可返回某个指定的字符串值在字符串首次出现的位置,如果要检索的…...
手机上怎么做微电影网站/好项目推荐平台
百度的对话式 AI 领先能力获世界级认可。近日,全球权威的技术研究与咨询机构 Gartner 发布《竞争格局报告:对话式 AI 平台》报告,百度成为国内唯一入围的供应商,在对话式人工智能领域处于市场领先地位。 ▲ Gartner 发布《竞争格局…...
网站建设分析报告/搜一搜
note:本文短代码实现环境:win10,python3 本文代码执行情况 python打开浏览器方法一: 通过引用os包,调用system方法调用系统的ie程序来打开网址 代码如下: import os os.system("C:/Program Files/Internet Explorer/iexplore…...
专业网站制作咨询/长沙百度首页排名
请求[request] 如果请求 status 是pending,说明你get或者post用反了 GET(请求的方式) /newcoder/hello.html(请求的目标资源) HTTP/1.1(请求采用的协议和版本号) Accept: /(客户端能接收的资源类型) Accept-Language: en-us(客户端接收的语言类型) Connection: Ke…...
大连 网站制作/国外网站制作
关于需求跟踪矩阵的一些认识: 3个youtube的视频 https://www.youtube.com/watch?vA1rF0BhcddQ (这个视频)推荐了这几个网址(这几个推荐的网址很好) https://www.softwaretestingmaterial.com/requirements-…...
富阳网站/泉州百度seo
闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域 说明: 关于闭包,即函数定义和函数表达…...
做网站空间放哪些文件夹/猪八戒网接单平台
本例采用简单工厂模式方法实现对象的序列化,现已实现的三种方法为:Xml,Soap和Binary三种方式,具体实现方法如下: 序列化基类代码如下: 1 public class XSerializeTool2 {3 /// <summary>4 /…...