当前位置: 首页 > news >正文

yolov8 opencv模型部署(python版)

yolov8 opencv模型部署(python版)

使用opencv推理yolov8模型,以yolov8n为例子,一共几十行代码,没有废话,给出了注释,从今天起,少写一行代码,少掉一根头发。测试数据有需要见文章结尾。

一、安装yolov8

conda create -n yolov8 python=3.9 -y
conda activate yolov8
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

二、导出onnx

导出onnx格式模型的时候,注意,如果你是自己训练的模型,只需要把以下代码中yolov8n.pt修改为自己的模型即可,如best.pt。如果是下面代码中默认的模型,并且你没有下载到本地,系统会自动下载,我这里在文章末尾提供了下载链接。

将以下代码创建、拷贝到yolov8根目录下。

具体代码my_export.py:

from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt')  # load an official model
# Export the model
model.export(format='onnx', opset=12)

执行导出命令:

python my_export.py

输出如下图信息,表明onnx格式的模型被成功导出,保存在my_export.py同一级目录。
请添加图片描述

三、基于opencv推理onnx

在章节一中,安装了ultralytics的时候,默认安装了opencv-python4.8.0.74,所以推理的时候可以直接利用这个python环境。将以下代码创建、拷贝到yolov8根目录下。

具体代码infer_opencv.py

import argparse
import cv2.dnn
import numpy as np'''
注意:如果你推理自己的模型,以下类别需要改成你自己的具体类别
'''
# coco80个类别
CLASSES = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 
'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
# 80个类别对应80中随机颜色
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))# 绘制
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):label = f'{CLASSES[class_id]} ({confidence:.2f})'color = colors[class_id]# 绘制矩形框cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)# 绘制类别cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)def main(onnx_model, input_image):# 使用opencv读取onnx文件model: cv2.dnn.Net = cv2.dnn.readNetFromONNX(onnx_model)# 读取原图original_image: np.ndarray = cv2.imread(input_image)[height, width, _] = original_image.shapelength = max((height, width))image = np.zeros((length, length, 3), np.uint8)image[0:height, 0:width] = original_imagescale = length / 640 # 缩放比例# 设置模型输入blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)model.setInput(blob)# 推理outputs = model.forward() # output: 1 X 8400 x 84outputs = np.array([cv2.transpose(outputs[0])])rows = outputs.shape[1]boxes = []scores = []class_ids = []# outputs有8400行,遍历每一行,筛选最优检测结果for i in range(rows):# 找到第i个候选目标在80个类别中,最可能的类别classes_scores = outputs[0][i][4:] # classes_scores:80 X 1(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)if maxScore >= 0.25:box = [# cx cy w h  -> x y w h outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),outputs[0][i][2], outputs[0][i][3]]boxes.append(box) #边界框scores.append(maxScore) # 置信度class_ids.append(maxClassIndex) # 类别# opencv版最极大值抑制result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)for i in range(len(result_boxes)):index = result_boxes[i]box = boxes[index]draw_bounding_box(original_image, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))cv2.imshow('image', original_image)cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--model', default='yolov8n.onnx', help='Input your onnx model.')parser.add_argument('--img', default=str('bus.jpg'), help='Path to input image.')args = parser.parse_args()main(args.model, args.img)

在终端执行推理命令,命令如下:

python  infer_opencv.py  --model yolov8n.onnx --img bus.jpg

效果图如图所示:
请添加图片描述
资源下载:(可以自己使用文章代码生成,也可以使用以下资源)
链接:https://pan.baidu.com/s/1mCBx_TVpUhpREoMXhRIlJw?pwd=fkmt
提取码:fkmt

相关文章:

yolov8 opencv模型部署(python版)

yolov8 opencv模型部署(python版) 使用opencv推理yolov8模型,以yolov8n为例子,一共几十行代码,没有废话,给出了注释,从今天起,少写一行代码,少掉一根头发。测试数据有需…...

Simulink仿真封装中的参数个对话框设置

目录 参数和对话框窗格 初始化窗格 文档窗格 为了更加直观和清晰的分析仿真,会将多个元件实现的一个功能封装在一起,通过参数对话框窗格,可以使用参数、显示和动作选项板中的对话框控制设计封装对话框。如图所示: 参数和对话框…...

【C++】class的设计与使用(十)重载iostream运算符

希望对某个类对象进行读写操作&#xff0c;直接cout<<类对象<<endl;或cin>>类对象;编译器会报错&#xff0c;所以我们必须提供一份重载的input/output运算符&#xff1a; 重载ostream运算符 ostream& operator<<(ostream &os, const Triangu…...

Java使用Scanner类实现用户输入与交互

概述&#xff1a; Scanner类是Java中的一个重要工具类&#xff0c;用于读取用户的输入。它提供了一系列的方法&#xff0c;可以方便地读取不同类型的数据&#xff0c;如整数、浮点数、字符串等。在本文中&#xff0c;我们将详细介绍Scanner类的使用方法&#xff0c;并通过两个…...

FFmpeg 命令:从入门到精通 | ffppeg 命令参数说明

FFmpeg 命令&#xff1a;从入门到精通 | ffmpeg 命令参数说明 FFmpeg 命令&#xff1a;从入门到精通 | ffmpeg 命令参数说明主要参数音频参数视频参数更多参考 FFmpeg 命令&#xff1a;从入门到精通 | ffmpeg 命令参数说明 本节主要介绍了 ffmpeg 命令的常用参数。 主要参数 …...

Chrome(谷歌浏览器)如何关闭搜索栏历史记录

目录 问题描述解决方法插件解决&#xff08;亲测有效&#xff09;自带设置解决步骤首先打开 地址 输入&#xff1a;chrome://flags关闭浏览器&#xff0c;重新打开Chrome 发现 已经正常 问题描述 Chrome是大家熟知的浏览器&#xff0c;但是搜索栏的历史记录如何自己一条条的删…...

基于Java的宠物医院管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…...

使用WPS自动化转换办公文档: 将Word, PowerPoint和Excel文件转换为PDF

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

对pyside6中的textedit进行自定义,实现按回车可以触发事件。

我的实现方法是&#xff0c;先用qt designer写好界面&#xff0c;如下图&#xff1a; 接着将其生成的ui文件编译成为py文件。 找到里面这几行代码&#xff1a; self.textEdit QTextEdit(self.centralwidget)self.textEdit.setObjectName(u"textEdit")self.textEdit…...

Spark SQL

Spark SQL 一、Spark SQL概述二、准备Spark SQL的编程环境三、Spark SQL程序编程的入口四、DataFrame的创建五、DataFrame的编程风格六、DataSet的创建和使用七、Spark SQL的函数操作 一、Spark SQL概述 Spark SQL属于Spark计算框架的一部分&#xff0c;是专门负责结构化数据的…...

初识多线程

一、多任务 现实中太多这样同时做多件事的例子了&#xff0c;例如一边吃饭一遍刷视频&#xff0c;看起来是多个任务都在做&#xff0c;其实本质上我们的大脑在同一时间依旧只做了一件事情。 二、普通方法调用和多线程 普通方法调用只有主线程一条执行路径 多线程多条执行路径…...

Linux用户、用户组和文件权限的管理与实践

目录 一、Linux用户、用户组和文件权限的基础概念与作用1.1 Linux用户的概念与作用1.2 Linux用户组的概念与作用1.3 Linux文件权限的概念与作用 二、Linux用户、用户组和文件权限的具体操作实践2.1 创建新用户&#xff1a;从零开始构建用户体系2.2 修改用户和用户组属性&#x…...

【CMU15-445 Part-14】Query Planning Optimization I

Part14-Query Planning & Optimization I SQL is Declarative&#xff0c;只告诉想要什么而不需要说怎么做。 IBM System R是第一个实现query optimizer查询优化器的系统 Heuristics / Rules 条件触发 静态规则&#xff0c;重写query来remove 低效或者愚蠢的东西&#xf…...

七、垃圾收集中级

JVM由浅入深系列 JVM由浅入深系列一、关于Java性能的误解二、Java性能概述三、了解JVM概述四、探索JVM架构五、垃圾收集基础六、HotSpot中的垃圾收集七、垃圾收集中级八、垃圾收集高级👋垃圾收集中级 ⚽️1. 权衡收集器插件 就 Java 平台而言,有一点可能初学者未必能马上意…...

el-menu 导航栏学习(1)

最简单的导航栏学习跳转实例效果&#xff1a; &#xff08;1&#xff09;index.js路由配置&#xff1a; import Vue from vue import Router from vue-router import NavMenuDemo from /components/NavMenuDemo import test1 from /components/test1 import test2 from /c…...

Axios请求封装

安装axios&#xff0c;在net文件下新建index.js&#xff0c;封装InternalPsot请求&#xff1a; function internalPost(url,data,header,success,failure,errordefaultError()){axios.post(url,data,{headers:header}).then(({data})>{if (data.code200){success(data.dat…...

Pikachu靶场——XXE 漏洞

文章目录 1. XXE1.1 查看系统文件内容1.2 查看PHP源代码1.3 查看开放端口1.4 探测内网主机 1. XXE 漏洞描述 XXE&#xff08;XML External Entity&#xff09;攻击是一种利用XML解析器漏洞的攻击。在这种攻击中&#xff0c;攻击者通过在XML文件中插入恶意实体来触发解析器加载…...

vscode登录租的新服务器

1.connect to…… 选择 connect current window to host 2.configure SSH Host 选择本地配置文件 打开配置文件&#xff0c;把主机名端口号写进去 再返回vscode远程登录页面&#xff0c;左侧栏就会出现这个主机名了。...

Verilog参数定义与仿真模块中的参数修改

文章目录 参数方式定义参数的优势rtl模块中的参数定义模块名后定义参数parameter定义参数 仿真模块中的参数修改例化时修改defparam修改 总结与说明附录&#xff1a;测试代码 参数方式定义参数的优势 当一个模块被另一个模块引用例化时&#xff0c;高层模块可以对低层模块的参…...

Android studio升级Giraffe | 2022.3.1 Patch 1踩坑

这里写自定义目录标题 not "opens java.io" to unnamed module错误报错信息解决 superclass access check failed: class butterknife.compiler.ButterKnifeProcessor$RScanner报错报错信息解决 Android studio升级Giraffe | 2022.3.1 Patch 1后&#xff0c;出现项目…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...