【图论C++】Floyd算法(多源最短路径长 及 完整路径)
>>>竞赛算法
/*** @file * @author jUicE_g2R(qq:3406291309)————彬(bin-必应)* 一个某双流一大学通信与信息专业大二在读 * * @brief 一直在算法竞赛学习的路上* * @copyright 2023.9* @COPYRIGHT 原创技术笔记:转载需获得博主本人同意,且需标明转载源** @language C++* @Version 1.0还在学习中 */
- UpData Log👆 2023.9.29 更新进行中
- Statement0🥇 一起进步
- Statement1💯 有些描述可能不够标准,但能达其意
文章目录
- >>>竞赛算法
- 21 Floyd算法
- 21-1 比较几种求解 最短路径 的算法
- 21-2 孕育出 Floyd算法 的 原因
- 21-3 Floyd算法 的 实现
- 就纯一暴力法,没什么说的
21 Floyd算法
21-1 比较几种求解 最短路径 的算法
- 常见的有:
DJ算法、Floyd算法、A*算法、Bellman-Ford 算法、SPFA算法
其中 A*算法 是 DJ算法 的plus版,SPFA算法 是 Bellman-Ford 算法的plus版
| 算法名称 | DJ算法 | Floyd算法 | SPFA算法 | A*算法 |
|---|---|---|---|---|
| 单/多源 | 单源 | 多源 | 单源 | |
| 可否求负权值图 | 否 | 可 | 否 | |
| 效率 | 较高 | 较低 | 很高 | |
| 思想 | 贪心 | 动规DP,松弛 | 松弛 | 启发式搜索,估值函数 |
| 解的最优性 | 最优 | 最优 | 相对最优 |
- 单源指的是:一个起点,到其他所有点
21-2 孕育出 Floyd算法 的 原因
求 n个端点的图 的 多源最短路径,可以将 Dijkstra算法 执行 n次,但这样时间复杂度也上去了 O ( n 2 ∗ n ) O(n^2*n) O(n2∗n),而且代码也很臃肿,此时就需要针对这类问题单独设计一种算法解决 代码量大 的问题——就产生了Floyd算法 。
虽然 Floyd算法 的效率相对较低 1 ^1 1且不适合处理数据量过大 2 ^2 2的图 ,但是它处理 稠密图 3 ^3 3 时效率是高于 Dijkstra算法的,而且 floyd算法 的代码量极小 4 ^4 4,实现也很简单!!!
1 ^1 1:时间复杂度为 O ( n 3 ) O(n^3) O(n3)。
2 ^2 2:空间复杂度为 O ( n 2 ) O(n^2) O(n2):,使用的是邻接矩阵(直接开辟二维数组)。在处理
稠密图时格外浪费空间。3 ^3 3:由于三重循环结构紧凑
4 ^4 4:
Dijkstra算法的思想上是很容易接受的,但是实现上其实是非常麻烦的
21-3 Floyd算法 的 实现
- 第一步:存储图:使用的是领接矩阵

- 第二步:三重循环
设 m m m 为中介点、 i i i 为起点、 j j j 为终点,这一点很像 A*算法。
判断由 起点 i 起点i 起点i 直接到 终点 j 终点j 终点j 的代价值 是否大于 起点 i 起点i 起点i 经由 中介点 m 中介点m 中介点m 到 终点 j 终点j 终点j 的代价值(即判断 d p [ i ] [ j ] > d p [ i ] [ m ] + d p [ m ] [ j ] dp[i][j]>dp[i][m]+dp[m][j] dp[i][j]>dp[i][m]+dp[m][j]),若大于(判断成立)则将从 起点 i 起点i 起点i 直接到 终点 j 终点j 终点j 的代价值 更新为 d p [ i ] [ j ] = d p [ i ] [ m ] + d p [ m ] [ j ] dp[i][j]=dp[i][m]+dp[m][j] dp[i][j]=dp[i][m]+dp[m][j]
//法一:三目运算符直接搞定
dp[i][j] = dp[i][j] > (dp[i][m]+dp[m][j]) ? (dp[i][m]+dp[m][j]) : dp[i][j];
//法二:调用函数
dp[i][j] = min(dp[i][j], (dp[i][m]+dp[m][j]));
三重循环结束后,路径规划结束。

#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
int dp[6][6]={{ 0, 2, 3, 6, INF, INF}, { 2, 0, INF, INF, 4, 6}, { 3, INF, 0, 2, INF, INF}, { 6, INF, 2, 0, 1, 3}, {INF, 4, INF, 1, 0, INF}, {INF, 6, INF, 3, INF, 0}
};
vector<vector<int>> Mid(6,vector<int>(6,INF));
char ch[6]={'A','B','C','D','E','F'};
void Floyd(int n){int m,i,j;for(m=0; m<n; m++) //k为中介点for(i=0; i<n;i++) //i为起点for(j=0; j<n;j++){ //j为终点if(dp[i][j] > (dp[i][m]+dp[m][j])){ //松弛操作dp[i][j] = (dp[i][m]+dp[m][j]);Mid[i][j]=m; //记录中介点}}
}
void Find_Path(int i, int j){if(Mid[i][j]==INF)cout<< ch[i];else{Find_Path(i, Mid[i][j]);i=Mid[i][j];while(Mid[i][j]!=INF){cout<< "->" << ch[ Mid[i][j] ] ;i=Mid[i][j];}}cout<< "->" << ch[j] <<endl;
}
int main(void){int n=6;Floyd(n);for(int i=0; i<n; i++){for(int j=0; j<n; j++){cout<< "结点" << ch[i] << "到结点" << ch[j] <<"的最短路径长为:" << dp[i][j] << ",";cout<<"最短路径为:";Find_Path(i,j);}cout<<endl;}return 0;
}
就纯一暴力法,没什么说的
相关文章:
【图论C++】Floyd算法(多源最短路径长 及 完整路径)
>>>竞赛算法 /*** file * author jUicE_g2R(qq:3406291309)————彬(bin-必应)* 一个某双流一大学通信与信息专业大二在读 * * brief 一直在算法竞赛学习的路上* * copyright 2023.9* COPYRIGHT 原创技术笔记ÿ…...
小谈设计模式(11)—模板方法模式
小谈设计模式(11)—模板方法模式 专栏介绍专栏地址专栏介绍 模板方法模式角色分类抽象类(Abstract Class)具体子类(Concrete Class)抽象方法(Abstract Method)具体方法(C…...
C#程序中很多ntdll.dll、clr.dll的线程
如下图 需要“右键工程——调试——取消勾选‘启用本地代码调试’”即可。...
低代码工作流程管理系统:提升企业运营效率的利器
业务运营状况是否良好,除了人员需要配合以外,真正发挥作用的是背后的工作流程。将重复的工作进行自动化处理,确保这些流程最终指向同一个目标、实现一致的运营结果。而设计和实施不佳的工作流程则产生相反的效果——导致处理时间延长、运营成…...
HIVE SQL regexp_extract和regexp_replace配合使用正则提取多个符合条件的值
《平凡的世界》评分不错,《巴黎圣母院》改变成的电影不错,还有<<1984>>也蛮好看。 如何使用regexp_extract®exp_replace函数将以上文本中所有书籍名称都提取出来? select substr(regexp_replace(regexp_extract(regexp_…...
debian 安装matlab2022b报错解决方法与问题解决思路
报错 terminate called after throwing an instance of ‘std::runtime_error’ 在安装目录执行 ./bin/glnxa64/MATLABWindow通过执行以上命令发现是和libharfbuzz库有关。 该库在调用freetype库时,有方法找不到。 偿试remove freetype库,发现该库有大…...
Jenkins集成AppScan实现
一、Jenkins上安装插件 在Jenkins里安装以下插件 ibm-security-appscanstandard-scanner 二、打开AppScan 1、配置需要扫描的地址 配置需要扫描的地址 2、记录好要扫描的URL登录序列 记录好要扫描的URL登录序列 3、导出要扫描的URL登录序列设置 导出要扫描的URL登录序列设置 三…...
10.1 File类
前言: java.io包中的File类是唯一一个可以代表磁盘文件的对象,它定义了一些用于操作文件的方法。通过调用File类提供的各种方法,可以创建、删除或者重命名文件,判断硬盘上某个文件是否存在,查询文件最后修改时间&…...
[论文笔记]UNILM
引言 今天带来论文Unified Language Model Pre-training for Natural Language Understanding and Generation的笔记,论文标题是 统一预训练语言模型用于自然语言理解和生成。 本篇工作提出了一个新的统一预训练语言模型(Unifield pre-trained Language Model,UniLM),可以同…...
LLM之Colossal-LLaMA-2:Colossal-LLaMA-2的简介、安装、使用方法之详细攻略
LLM之Colossal-LLaMA-2:Colossal-LLaMA-2的简介、安装、使用方法之详细攻略 导读:2023年9月25日,Colossal-AI团队推出了开源模型Colossal-LLaMA-2-7B-base。Colossal-LLaMA-2项目的技术细节,主要核心要点总结如下: >> 数据处…...
国庆作业2
select实现服务器并发 代码: #include <myhead.h>#define ERR_MSG(msg) do{\printf("%d\n",__LINE__);\perror(msg);\ }while(0)#define PORT 8888#define IP "192.168.1.5"int main(int argc, const char *argv[]) {//创建流式套接字…...
fork仓库的代码如何同步主仓库代码
1.背景 我fork了一份 jekyll-theme-chirpy 仓库的代码(基于 jekyll 的自建博客仓库,可以免服务器),我需要在上面更新我的博客文章,但是我又想一直同步 jekyll-theme-chirpy 仓库的新功能,这样我可以更新自己的博客功能。所以我就…...
【Axure】元件库和母版、常见的原型规范、静态原型页面制作
添加现有元件库 点击元件库——载入 当然也可以创建元件库,自己画自己保存 建立京东秒杀母版 静态原型页面的制作 框架 选择以iphone8的界面大小为例,顶部状态栏高度为20 左侧类似于标尺,因为图标、文字离最左侧的间距是不一样的 信…...
在设备树中描述中断
参考文档: 内核 Documentation\devicetree\bindings\interrupt-controller\interrupts.txt 在设备树中,中断控制器节点中必须有一个属性: interrupt-controller,表明它是“中断控制器”。 还必须有一个属性: #interru…...
ccf_csp第一题汇总
ccf_csp第一题汇总 printf()输出格式大全(附 - 示例代码)现值计算AcWing 4699. 如此编码AcWing 4509. 归一化处理(小数位数根号函数)AcWing 4454. 未初始化警告AcWing 4280. 序列查询AcWing 4006. 数组推导(小陷阱)AcWing 3292. 称检测点查询AcWing 3287…...
uniapp 实现下拉筛选框 二次开发定制
前言 最近又收到了一个需求,需要在uniapp 小程序上做一个下拉筛选框,然后找了一下插件市场,确实有找到,但不过他不支持搜索,于是乎,我就自动动手,进行了二开定制,站在巨人的肩膀上&…...
实现单行/多行文本溢出
在日常开发展示页面,如果一段文本的数量过长,受制于元素宽度的因素,有可能不能完全显示,为了提高用户的使用体验,这个时候就需要我们把溢出的文本显示成省略号。 一. 单行文本溢出 即文本在一行内显示,超出…...
Spring Boot中的Binder类
介绍 Spring Boot中的Binder类是一个用于绑定属性的工具类。它可以将配置文件中的属性值绑定到Java对象中,从而方便地进行配置管理。 简单示例 import org.springframework.boot.context.properties.bind.Binder; import org.springframework.core.env.Environmen…...
leetcode之打家劫舍
leetcode 198 打家劫舍 leetcode 213 打家劫舍 II leetcode 337. 打家劫舍 III 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时&#…...
走进Spring的世界 —— Spring底层核心原理解析(一)
文章目录 前言一、Spring中是如何创建一个对象二、Bean的创建过程三、推断构造方法四、AOP大致流程五、Spring事务 前言 ClassPathXmlApplicationContext context new ClassPathXmlApplicationContext("config.xml"); UserService userService (UserService) cont…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
