当前位置: 首页 > news >正文

【图论C++】Floyd算法(多源最短路径长 及 完整路径)

>>>竞赛算法

/*** @file            * @author          jUicE_g2R(qq:3406291309)————彬(bin-必应)*						一个某双流一大学通信与信息专业大二在读	* * @brief           一直在算法竞赛学习的路上* * @copyright       2023.9* @COPYRIGHT			 原创技术笔记:转载需获得博主本人同意,且需标明转载源** @language        C++* @Version         1.0还在学习中  */
  • UpData Log👆 2023.9.29 更新进行中
  • Statement0🥇 一起进步
  • Statement1💯 有些描述可能不够标准,但能达其意

文章目录

  • >>>竞赛算法
  • 21 Floyd算法
    • 21-1 比较几种求解 最短路径 的算法
    • 21-2 孕育出 Floyd算法 的 原因
    • 21-3 Floyd算法 的 实现
  • 就纯一暴力法,没什么说的

21 Floyd算法

21-1 比较几种求解 最短路径 的算法

  • 常见的有:DJ算法Floyd算法A*算法Bellman-Ford 算法SPFA算法

其中 A*算法DJ算法 的plus版,SPFA算法Bellman-Ford 算法的plus版

算法名称DJ算法Floyd算法SPFA算法A*算法
单/多源单源多源单源
可否求负权值图
效率较高较低很高
思想贪心动规DP,松弛松弛启发式搜索,估值函数
解的最优性最优最优相对最优
  • 单源指的是:一个起点,到其他所有点

21-2 孕育出 Floyd算法 的 原因

n个端点的图 的 多源最短路径,可以将 Dijkstra算法 执行 n次,但这样时间复杂度也上去了 O ( n 2 ∗ n ) O(n^2*n) O(n2n),而且代码也很臃肿,此时就需要针对这类问题单独设计一种算法解决 代码量大 的问题——就产生了Floyd算法

虽然 Floyd算法 的效率相对较低 1 ^1 1且不适合处理数据量过大 2 ^2 2的图 ,但是它处理 稠密图 3 ^3 3 时效率是高于 Dijkstra算法的,而且 floyd算法 的代码量极小 4 ^4 4,实现也很简单!!!

1 ^1 1:时间复杂度为 O ( n 3 ) O(n^3) O(n3)

2 ^2 2:空间复杂度为 O ( n 2 ) O(n^2) O(n2):,使用的是邻接矩阵(直接开辟二维数组)。在处理稠密图时格外浪费空间。

3 ^3 3:由于三重循环结构紧凑

4 ^4 4Dijkstra算法的思想上是很容易接受的,但是实现上其实是非常麻烦的

21-3 Floyd算法 的 实现

  • 第一步:存储图:使用的是领接矩阵

  • 第二步:三重循环

m m m 为中介点、 i i i 为起点、 j j j 为终点,这一点很像 A*算法。

判断由 起点 i 起点i 起点i 直接到 终点 j 终点j 终点j 的代价值 是否大于 起点 i 起点i 起点i 经由 中介点 m 中介点m 中介点m 终点 j 终点j 终点j 的代价值(即判断 d p [ i ] [ j ] > d p [ i ] [ m ] + d p [ m ] [ j ] dp[i][j]>dp[i][m]+dp[m][j] dp[i][j]>dp[i][m]+dp[m][j]),若大于(判断成立)则将从 起点 i 起点i 起点i 直接到 终点 j 终点j 终点j 的代价值 更新为 d p [ i ] [ j ] = d p [ i ] [ m ] + d p [ m ] [ j ] dp[i][j]=dp[i][m]+dp[m][j] dp[i][j]=dp[i][m]+dp[m][j]

//法一:三目运算符直接搞定
dp[i][j] = dp[i][j] > (dp[i][m]+dp[m][j])  ?  (dp[i][m]+dp[m][j]) : dp[i][j];
//法二:调用函数
dp[i][j] = min(dp[i][j], (dp[i][m]+dp[m][j]));

三重循环结束后,路径规划结束。

#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
int dp[6][6]={{  0,   2,   3,   6, INF, INF}, 				{  2,   0, INF, INF,   4,   6}, 				{  3, INF,   0,   2, INF, INF},				{  6, INF,   2,   0,   1,   3}, {INF,   4, INF,   1,   0, INF}, 			{INF,   6, INF,   3, INF,   0}
};
vector<vector<int>> Mid(6,vector<int>(6,INF));
char ch[6]={'A','B','C','D','E','F'};
void Floyd(int n){int m,i,j;for(m=0; m<n; m++)                                      //k为中介点for(i=0; i<n;i++) 			                        //i为起点for(j=0; j<n;j++){ 		                        //j为终点if(dp[i][j] > (dp[i][m]+dp[m][j])){         //松弛操作dp[i][j] = (dp[i][m]+dp[m][j]);Mid[i][j]=m;                            //记录中介点}}
}
void Find_Path(int i, int j){if(Mid[i][j]==INF)cout<< ch[i];else{Find_Path(i, Mid[i][j]);i=Mid[i][j];while(Mid[i][j]!=INF){cout<< "->" << ch[ Mid[i][j] ] ;i=Mid[i][j];}}cout<< "->" << ch[j] <<endl;
}
int main(void){int n=6;Floyd(n);for(int i=0; i<n; i++){for(int j=0; j<n; j++){cout<< "结点" << ch[i] << "到结点" << ch[j] <<"的最短路径长为:" << dp[i][j] << ",";cout<<"最短路径为:";Find_Path(i,j);}cout<<endl;}return 0;
}

就纯一暴力法,没什么说的

相关文章:

【图论C++】Floyd算法(多源最短路径长 及 完整路径)

>>>竞赛算法 /*** file * author jUicE_g2R(qq:3406291309)————彬(bin-必应)* 一个某双流一大学通信与信息专业大二在读 * * brief 一直在算法竞赛学习的路上* * copyright 2023.9* COPYRIGHT 原创技术笔记&#xff…...

小谈设计模式(11)—模板方法模式

小谈设计模式&#xff08;11&#xff09;—模板方法模式 专栏介绍专栏地址专栏介绍 模板方法模式角色分类抽象类&#xff08;Abstract Class&#xff09;具体子类&#xff08;Concrete Class&#xff09;抽象方法&#xff08;Abstract Method&#xff09;具体方法&#xff08;C…...

C#程序中很多ntdll.dll、clr.dll的线程

如下图 需要“右键工程——调试——取消勾选‘启用本地代码调试’”即可。...

低代码工作流程管理系统:提升企业运营效率的利器

业务运营状况是否良好&#xff0c;除了人员需要配合以外&#xff0c;真正发挥作用的是背后的工作流程。将重复的工作进行自动化处理&#xff0c;确保这些流程最终指向同一个目标、实现一致的运营结果。而设计和实施不佳的工作流程则产生相反的效果——导致处理时间延长、运营成…...

HIVE SQL regexp_extract和regexp_replace配合使用正则提取多个符合条件的值

《平凡的世界》评分不错&#xff0c;《巴黎圣母院》改变成的电影不错&#xff0c;还有<<1984>>也蛮好看。 如何使用regexp_extract&regexp_replace函数将以上文本中所有书籍名称都提取出来&#xff1f; select substr(regexp_replace(regexp_extract(regexp_…...

debian 安装matlab2022b报错解决方法与问题解决思路

报错 terminate called after throwing an instance of ‘std::runtime_error’ 在安装目录执行 ./bin/glnxa64/MATLABWindow通过执行以上命令发现是和libharfbuzz库有关。 该库在调用freetype库时&#xff0c;有方法找不到。 偿试remove freetype库&#xff0c;发现该库有大…...

Jenkins集成AppScan实现

一、Jenkins上安装插件 在Jenkins里安装以下插件 ibm-security-appscanstandard-scanner 二、打开AppScan 1、配置需要扫描的地址 配置需要扫描的地址 2、记录好要扫描的URL登录序列 记录好要扫描的URL登录序列 3、导出要扫描的URL登录序列设置 导出要扫描的URL登录序列设置 三…...

10.1 File类

前言&#xff1a; java.io包中的File类是唯一一个可以代表磁盘文件的对象&#xff0c;它定义了一些用于操作文件的方法。通过调用File类提供的各种方法&#xff0c;可以创建、删除或者重命名文件&#xff0c;判断硬盘上某个文件是否存在&#xff0c;查询文件最后修改时间&…...

[论文笔记]UNILM

引言 今天带来论文Unified Language Model Pre-training for Natural Language Understanding and Generation的笔记,论文标题是 统一预训练语言模型用于自然语言理解和生成。 本篇工作提出了一个新的统一预训练语言模型(Unifield pre-trained Language Model,UniLM),可以同…...

LLM之Colossal-LLaMA-2:Colossal-LLaMA-2的简介、安装、使用方法之详细攻略

LLM之Colossal-LLaMA-2&#xff1a;Colossal-LLaMA-2的简介、安装、使用方法之详细攻略 导读&#xff1a;2023年9月25日&#xff0c;Colossal-AI团队推出了开源模型Colossal-LLaMA-2-7B-base。Colossal-LLaMA-2项目的技术细节&#xff0c;主要核心要点总结如下: >> 数据处…...

国庆作业2

select实现服务器并发 代码&#xff1a; #include <myhead.h>#define ERR_MSG(msg) do{\printf("%d\n",__LINE__);\perror(msg);\ }while(0)#define PORT 8888#define IP "192.168.1.5"int main(int argc, const char *argv[]) {//创建流式套接字…...

fork仓库的代码如何同步主仓库代码

1.背景 我fork了一份 jekyll-theme-chirpy 仓库的代码(基于 jekyll 的自建博客仓库&#xff0c;可以免服务器)&#xff0c;我需要在上面更新我的博客文章&#xff0c;但是我又想一直同步 jekyll-theme-chirpy 仓库的新功能&#xff0c;这样我可以更新自己的博客功能。所以我就…...

【Axure】元件库和母版、常见的原型规范、静态原型页面制作

添加现有元件库 点击元件库——载入 当然也可以创建元件库&#xff0c;自己画自己保存 建立京东秒杀母版 静态原型页面的制作 框架 选择以iphone8的界面大小为例&#xff0c;顶部状态栏高度为20 左侧类似于标尺&#xff0c;因为图标、文字离最左侧的间距是不一样的 信…...

在设备树中描述中断

参考文档&#xff1a; 内核 Documentation\devicetree\bindings\interrupt-controller\interrupts.txt 在设备树中&#xff0c;中断控制器节点中必须有一个属性&#xff1a; interrupt-controller&#xff0c;表明它是“中断控制器”。 还必须有一个属性&#xff1a; #interru…...

ccf_csp第一题汇总

ccf_csp第一题汇总 printf()输出格式大全&#xff08;附 - 示例代码&#xff09;现值计算AcWing 4699. 如此编码AcWing 4509. 归一化处理(小数位数根号函数)AcWing 4454. 未初始化警告AcWing 4280. 序列查询AcWing 4006. 数组推导(小陷阱)AcWing 3292. 称检测点查询AcWing 3287…...

uniapp 实现下拉筛选框 二次开发定制

前言 最近又收到了一个需求&#xff0c;需要在uniapp 小程序上做一个下拉筛选框&#xff0c;然后找了一下插件市场&#xff0c;确实有找到&#xff0c;但不过他不支持搜索&#xff0c;于是乎&#xff0c;我就自动动手&#xff0c;进行了二开定制&#xff0c;站在巨人的肩膀上&…...

实现单行/多行文本溢出

在日常开发展示页面&#xff0c;如果一段文本的数量过长&#xff0c;受制于元素宽度的因素&#xff0c;有可能不能完全显示&#xff0c;为了提高用户的使用体验&#xff0c;这个时候就需要我们把溢出的文本显示成省略号。 一. 单行文本溢出 即文本在一行内显示&#xff0c;超出…...

Spring Boot中的Binder类

介绍 Spring Boot中的Binder类是一个用于绑定属性的工具类。它可以将配置文件中的属性值绑定到Java对象中&#xff0c;从而方便地进行配置管理。 简单示例 import org.springframework.boot.context.properties.bind.Binder; import org.springframework.core.env.Environmen…...

leetcode之打家劫舍

leetcode 198 打家劫舍 leetcode 213 打家劫舍 II leetcode 337. 打家劫舍 III 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 &#xff0c;这意味着第一个房屋和最后一个房屋是紧挨着的。同时&#…...

走进Spring的世界 —— Spring底层核心原理解析(一)

文章目录 前言一、Spring中是如何创建一个对象二、Bean的创建过程三、推断构造方法四、AOP大致流程五、Spring事务 前言 ClassPathXmlApplicationContext context new ClassPathXmlApplicationContext("config.xml"); UserService userService (UserService) cont…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...