当前位置: 首页 > news >正文

量化交易全流程(四)

本节目录

数据准备(数据源与数据库)

CTA策略

数据源
在进行量化分析的时候,最基础的工作是数据准备,即收集数据、清理数据、建立数据库。下面先讨论收集数据的来源,数据来源可分为两大类:免费的数据源和商业数据库。
免费数据源包括新浪财经、Yahoo财经等。这些数据源提供的接口比较复杂,不是很好用。好消息是,Python中有对应的开源工具可以让数据获取变得简单。比如,akShare 能够获取新浪财经的数据,pandas-reader能够获取 Yahoo Finance 的数据。本章主要讨论akShare 和 pandas-reader 的用法。
商业数据库包括万得(Wind)、同花顺(iFind)、聚源等。商业数据库也分为两种,一种是软件终端,除了可以提供各种数据查询和可视化功能之外,还提供了接口以便从终端上提取数据。比如万得终端。终端的好处是价格便宜,简单易用。坏处是对提取的数据量有限制,而且数据的定制化功能很差,很多数据甚至都没有提供接口。另一种是落地数据库,通常是SQL数据库,所有数据直接落地,可以用SQL语句进行提取。落地数据库的好处是数据丰富,定制灵活,没有数据量限制;缺点是成本较高,而且技术门槛也相对较高。大部分人使用的是第一种,即终端提供的接口。本章就以Wind为例,讨论第一种数据库的用法。
前几张也详细谈到过获取数据接口,这里就不展开了,接找几个有用的技巧:

获取交易日历:

import akshare as ak
from datetime import datetime# Get the trade date history dataframe
tool_trade_date_hist_sina_df = ak.tool_trade_date_hist_sina()# Specify the start and end dates
start_date = "2022-01-01"
end_date = "2022-12-31"
start_date = datetime.strptime(start_date, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date, "%Y-%m-%d").date()# Extract the dates within the specified range
selected_dates = tool_trade_date_hist_sina_df[(tool_trade_date_hist_sina_df["trade_date"] >= start_date)\& (tool_trade_date_hist_sina_df["trade_date"] <= end_date)]print(selected_dates)

import akshare as ak
from datetime import datetime
macro_usa_gdp_monthly_df = ak.macro_usa_gdp_monthly()
start_date = "2022-01-01"
end_date = "2022-12-31"
start_date = datetime.strptime(start_date, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date, "%Y-%m-%d").date()# Extract the dates within the specified range
selected_dates = macro_usa_gdp_monthly_df[(macro_usa_gdp_monthly_df["日期"] >= start_date)\& (macro_usa_gdp_monthly_df["日期"] <= end_date)]
print(selected_dates)

如果想要获取国外市场数据,那么pandas-reader将是一个很好的免费数据接口。但pandas-reader也没有包含在Anaconda当中,需要自行安装。可以使用pip命令进行安装,命令如下:

pip install pandas-datareader

Pandas集成了很多免费的数据接口,包括但不限于Yahoo Finance、Google Finance、quandl、美联储、世界银行等提供的数据。
pandas-reader的接口使用也很简单。先导入相关的函数,命令如下:

import pandas_datareader.data as web

但是好像接口被关闭,获取不到数据。

获取美国宏观经济数据:

import akshare as ak
from datetime import datetime
macro_usa_gdp_monthly_df = ak.macro_usa_gdp_monthly()
start_date = "2022-01-01"
end_date = "2022-12-31"
start_date = datetime.strptime(start_date, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date, "%Y-%m-%d").date()# Extract the dates within the specified range
selected_dates = macro_usa_gdp_monthly_df[(macro_usa_gdp_monthly_df["日期"] >= start_date)\& (macro_usa_gdp_monthly_df["日期"] <= end_date)]
print(selected_dates)

 万得接口
一个简单例子
万得(Wind)提供了一系列的接口,其中也包含Python的接口。下面列举一段简单的示例代码,用于提取股票000001.SZ一周的日线数据,具体如下:

由于没有账号不方便演示,自行学习跳过。教你使用Python连接Wind金融数据接口 - 知乎 (zhihu.com)

基于Wind返回的data的数据结构特点,在创建DataFrame的时候,必须先将index与Fields 对应,columns与日期对应,之后再进行矩阵转置。

数据库

存储数据有很多种方式。有人比较喜欢以文件的形式存储,比如,csv文件或hdf5文件。但通常情况下,我还是比较喜欢建立一个数据库,以便于进行数据的管理和分享。而且,数据库本身也能完成很多数据计算和分析工作。
现今的数据库主要分为两种:一种是关系型数据库,也就是使用SQL语句进行操作的数据库,常见的有MySQL、PostgreSQL、SQL Sever等;一种是非关系型(NoSQL)数据库,比如MongoDB。这两种数据库各有其优势,这里主要还是使用传统的SQL数据库。本书中以PostgreSQL为例。SQL基础知识的讲解不在范围之内,大家可以自行查找相关的教程进行学习。这里假设读者已经具有SQL的相关基础。
Pandas利用SQLAlchemy包,提供了简单的数据库接口。比如,我们想把一个dataframe 存储到数据库里面,

前提是已经安装了:

pip install psycopg2
pip install sqlalchemy

可以使用如下代码: 

from sqlalchemy import create_engine
engine=create_engine ('postgresql://postgres@localhost:5432/postgres')
df.to_sql('stock_all_info',engine, if_exists='replace', index=True)

其中,engine存储了连接数据库的相关信息(数据库地址、数据库名称、用户名和密码)。
在df.to_sql中,第一个参数表示表的名称。参数if_exists表示假如现在已经存在此表,应进行什么操作;append代表在当前表中添加新的列;replace 表示替换当前表(删除当前已有的表);fail 表示不进行任何操作,默认值是fail;参数index 表示是否将DataFrame的索引也存储到表中。
存储的时候,数据库会自动识别每列的数据类型,并对应到SQL数据库的类型。比如我们将前面获取到的数据存储到stock_all_info中。数据库中会生成一张表。

由于date在df里面是索引,所以数据库也会自动地为这张表创建一个 date索引。
数据库的读取也非常容易,可以使用如下代码实现:

df=pd.read_sql('select * from stock_info',where windcode = '000001.SZ',engine)

其中,第一个参数是一个SQL查询语句,接口将返回该查询语句对应的DataFrame。

下载所有股票历史数据并存储

做策略研究的朋友经常会有建立一个完整的股票数据库的需求。本节将展示一个小程序,指导下载所有股票历史行情并存储到数据库中。

此处展示只获取5只股票,市场上有5000多只股票,获取不完,要花很长时间,另外获取时间我固定为20210101到现在的行情,如果有需求的话自行修改代码中的start_date;

先回顾如何在数据库里面创建表:(自行学习前面的数据库,这里不再介绍)

CREATE TABLE stocks (date DATE,stock_code VARCHAR(20),open DECIMAL(15,4),high DECIMAL(15,4),low DECIMAL(15,4),close DECIMAL(15,4),volume DECIMAL(30,8)
);

表里面具体的有日期,股票代码,四个价以及成交量。

实现代码具体如下:

delete from stocks;

查看表里面内容:

select * from stocks;

 

全部代码如下:(已经封装成类)

import akshare as ak
import datetime
import mysql.connector
import pymysql
import pandas as pdclass StockDataUpdater:def __init__(self, host, user, password, port, db):self.host = hostself.user = userself.password = passwordself.port = portself.db = db# -------------------------获取数据库中每只股票的历史数据---------------------------------------# 获取所有股票代码def all_stock_codes(self):all_stock_codes = ak.stock_zh_a_spot_em()[['代码']].sort_values(by='代码')all_stock_codes = all_stock_codes.reset_index(drop=True)return all_stock_codes# 判断股票所属市场def code_type(self, code):if code.find('60',0,3)==0:gp_type='sh'elif code.find('688',0,4)==0:gp_type='sh'elif code.find('900',0,4)==0:gp_type='sh'elif code.find('00',0,3)==0:gp_type='sz'elif code.find('300',0,4)==0:gp_type='sz'elif code.find('200',0,4)==0:gp_type='sz'elif code.find('8',0,1)==0:gp_type='bj'code = gp_type+codereturn code# 获取股票指标数据def get_indicator(self, stock_ID):stock_individual_info = ak.stock_individual_info_em(symbol = stock_ID)# 获取索引index = stock_individual_info.loc[stock_individual_info['item'] == '上市时间'].index[0]# 使用索引定位value列的开始日期start_date = str(stock_individual_info.loc[index, 'value'])start_date = start_date[:4] + start_date[4:6] + start_date[6:]start_date = '20210104'# 获取当前日期end_date = datetime.datetime.now().strftime('%Y%m%d')end_date = '20220104'# 新浪拉取数据,有些数据拉取不全stock_code = self.code_type(stock_ID)try:data = ak.stock_zh_a_daily(symbol=stock_code, start_date=start_date, end_date=end_date, adjust="qfq")df = data[['date','open','high','low','close','volume']]df = df.dropna()return dfexcept:return None# 连接数据库def insert_info(self, stock_indicator):conn = pymysql.connect(host = self.host # 连接名称,默认127.0.0.1,user = self.user # 用户名,password = self.password # 密码,port = self.port # 端口,默认为3306,db = self.db # 数据库名称,charset = 'utf8' # 字符编码)cur = conn.cursor() # 生成游标对象for index, row in stock_indicator.iterrows():sql = "INSERT INTO stocks(date,stock_code,open,high,low,close,volume) VALUES (%s, %s, %s, %s, %s, %s, %s)"cur.execute(sql, (row['date'], row['stock_code'], row['open'], row['high'],row['low'], row['close'],row['volume']))conn.commit()   # 提交事务cur.close() # 关闭游标conn.close() # 关闭连接# -------------------------更新数据库中每只股票的最新数据---------------------------------------# 获取数据库中每个股票的最新日期def get_latest_date(self, stock_code):conn = pymysql.connect(host='127.0.0.1', user='root', password='152617', port=3306, db='stock_info', charset='utf8')cur = conn.cursor()sql = f"SELECT MAX(date) FROM stocks WHERE stock_code = '{stock_code}'"cur.execute(sql)latest_date = cur.fetchone()[0]cur.close()conn.close()return latest_date# 拉取股票历史数据def update_historical_data(self):stocks_info = self.all_stock_codes()for i in range(len(stocks_info)):if i<3:stock_indicator = self.get_indicator(stocks_info['代码'][i])if stock_indicator is not None:stock_indicator = stock_indicator.assign(stock_code = stocks_info['代码'][i])self.insert_info(stock_indicator)else:break# 更新股票最新行情数据def update_latest_data(self):stocks_info = self.all_stock_codes()for i in range(len(stocks_info)):if i < 5:stock_code = stocks_info['代码'][i]latest_date = self.get_latest_date(stock_code)if latest_date is not None:latest_date = latest_date.strftime('%Y%m%d')stock_indicator = self.get_indicator(stock_code)if stock_indicator is not None:stock_indicator = stock_indicator.assign(stock_code=stock_code)if latest_date is not None:stock_indicator = stock_indicator[stock_indicator['date'] > latest_date]if not stock_indicator.empty:self.insert_info(stock_indicator)else:breakhost = '127.0.0.1'
user = 'root'
password = '152617'
port = 3306
db = 'stock_info'
updater = StockDataUpdater(host, user, password, port, db)# 更新历史数据
updater.update_historical_data()# 更新最新数据
# updater.update_latest_data()

 在这里我先将时间固定在20210104—20220104:

运行结果为:文件名为info.py

 

在获取历史行情时要去掉updater.update_latest_data();

然后更新股票时去掉updater.update_historical_data();同时要去掉end_date:

重新运行:

 运行结果为:

有一点不完善的是更新的数据并不是append在原来股票代码后面,但这并不影响,只要在数据库里面按照stock_code  sort一下即可。这里就不详细演示了。 

上面的程序,主要分为两步,第一步获取所有A股的代码。第二步是针对每一个股票,获取对应的指标(这里是open、high、low、close),并存储于数据库中,并进行实时更新。

下面这部分代码是获取全部股票行情数据存放到数据库中(耗时很长,谨慎运行):

import akshare as ak
import datetime
import mysql.connector
import pymysql
import pandas as pdclass StockDataUpdater:def __init__(self, host, user, password, port, db):self.host = hostself.user = userself.password = passwordself.port = portself.db = db# -------------------------获取数据库中每只股票的历史数据---------------------------------------# 获取所有股票代码def all_stock_codes(self):all_stock_codes = ak.stock_zh_a_spot_em()[['代码']].sort_values(by='代码')all_stock_codes = all_stock_codes.reset_index(drop=True)return all_stock_codes# 判断股票所属市场def code_type(self, code):if code.find('60',0,3)==0:gp_type='sh'elif code.find('688',0,4)==0:gp_type='sh'elif code.find('900',0,4)==0:gp_type='sh'elif code.find('00',0,3)==0:gp_type='sz'elif code.find('300',0,4)==0:gp_type='sz'elif code.find('200',0,4)==0:gp_type='sz'elif code.find('8',0,1)==0:gp_type='bj'code = gp_type+codereturn code# 获取股票指标数据def get_indicator(self, stock_ID):stock_individual_info = ak.stock_individual_info_em(symbol = stock_ID)# 获取索引index = stock_individual_info.loc[stock_individual_info['item'] == '上市时间'].index[0]# 使用索引定位value列的开始日期start_date = str(stock_individual_info.loc[index, 'value'])start_date = start_date[:4] + start_date[4:6] + start_date[6:]start_date = '20210104'# 获取当前日期end_date = datetime.datetime.now().strftime('%Y%m%d')# end_date = '20220104'# 新浪拉取数据,有些数据拉取不全stock_code = self.code_type(stock_ID)try:data = ak.stock_zh_a_daily(symbol=stock_code, start_date=start_date, end_date=end_date, adjust="qfq")df = data[['date','open','high','low','close','volume']]df = df.dropna()return dfexcept:return None# 连接数据库def insert_info(self, stock_indicator):conn = pymysql.connect(host = self.host # 连接名称,默认127.0.0.1,user = self.user # 用户名,password = self.password # 密码,port = self.port # 端口,默认为3306,db = self.db # 数据库名称,charset = 'utf8' # 字符编码)cur = conn.cursor() # 生成游标对象for index, row in stock_indicator.iterrows():sql = "INSERT INTO stocks(date,stock_code,open,high,low,close,volume) VALUES (%s, %s, %s, %s, %s, %s, %s)"cur.execute(sql, (row['date'], row['stock_code'], row['open'], row['high'],row['low'], row['close'],row['volume']))conn.commit()   # 提交事务cur.close() # 关闭游标conn.close() # 关闭连接# -------------------------更新数据库中每只股票的最新数据---------------------------------------# 获取数据库中每个股票的最新日期def get_latest_date(self, stock_code):conn = pymysql.connect(host='127.0.0.1', user='root', password='152617', port=3306, db='stock_info', charset='utf8')cur = conn.cursor()sql = f"SELECT MAX(date) FROM stocks WHERE stock_code = '{stock_code}'"cur.execute(sql)latest_date = cur.fetchone()[0]cur.close()conn.close()return latest_date# 拉取股票历史数据def update_historical_data(self):stocks_info = self.all_stock_codes()for i in range(len(stocks_info)):if True:stock_indicator = self.get_indicator(stocks_info['代码'][i])if stock_indicator is not None:stock_indicator = stock_indicator.assign(stock_code = stocks_info['代码'][i])self.insert_info(stock_indicator)else:break# 更新股票最新行情数据def update_latest_data(self):stocks_info = self.all_stock_codes()for i in range(len(stocks_info)):if True:stock_code = stocks_info['代码'][i]latest_date = self.get_latest_date(stock_code)if latest_date is not None:latest_date = latest_date.strftime('%Y%m%d')stock_indicator = self.get_indicator(stock_code)if stock_indicator is not None:stock_indicator = stock_indicator.assign(stock_code=stock_code)if latest_date is not None:stock_indicator = stock_indicator[stock_indicator['date'] > latest_date]if not stock_indicator.empty:self.insert_info(stock_indicator)else:breakhost = '127.0.0.1'
user = 'root'
password = '152617'
port = 3306
db = 'stock_info'
updater = StockDataUpdater(host, user, password, port, db)# 更新历史数据
updater.update_historical_data()# 更新最新数据
# updater.update_latest_data()

 获取好后,数据库中存在所有行情大致为:反正一直在更新数据(数据量很大)

 部分数据有问题,获取到300999金融鱼后面就暂停了,原因未知,暂时数据已经有159万条,本来预计数据大概有500多万条。

CTA策略

数据准备好后,下面进行策略介绍:

CTA全称是Commodity Trading Advisor,即"商品交易顾问",是由NFA(美国全国期货协会)认定的,在CFTC(商品期货交易委员会)注册,并接受监管的投资顾问。CTA 一般是指通过为客户提供期权、期货方面的交易建议,或者直接通过受管理的期货账户参与实际交易,来获得收益的机构或个人。
以上的定义只是原始的意思,随着市场的发展,市场对CTA策略的理解普遍发生了改变,它已不再只是商品期货了。实际上,目前国内的 CTA 策略大都是基于量价的趋势跟踪策略。无论是商品期货、金融期货,还是股票、外汇,只要是有历史公开量价的二级市场,都可以成为CTA策略运作的市场。国内市场中,期货是T+0,股票是T+1,且期货可以做多做空,所以期货的研究空间要大很多。国内成熟的第三方自动化交易软件,基本上都是从期货人手的。所以本部分就以期货作为研究对象,介绍基本的CTA策略研究思路和方法。

趋势跟踪策略理论基础

但凡接触过投资的,大概都听过"趋势跟踪"的概念。著名经济学家大卫.李嘉图曾将"趋势跟踪"策略表述为"截断亏损,让利润奔跑"。"趋势跟踪"策略,通俗地讲,就是涨了的股票,会涨得更高;跌了的股票,会跌得更低。只要我们顺着大势做,就能赚钱。

很多人将"趋势跟踪"奉为圭臬,坚定不移。也有人将其当作"金融巫术",认为该策略不值一提。那么"趋势跟踪"是否真的有效?很多信徒内心也不免打鼓。这种怀疑,就像肉中刺,平时隐隐作痛,令人不得安稳。假若不幸,连续亏损,则是"发炎肿胀",让人难受得开始怀疑人生。

"趋势跟踪"不是魔法,不可能让你天天赚钱,甚至都不一定能年年赚钱。但既然该策略能广为流传,那一定是有其道理的。

为了"讲清道理",各种机构的学者没少花时间和精力来研究该策略。

2012年,Tobias J. Moskowitz 等人发表的文章《Time series momentum》,使用了最基本的"趋势跟踪"策略——买人最近上涨的资产,卖空最近下跌的资产。此策略自 1985年以来,在几乎所有的股票指数期货、债券期货、商品期货以及远期货币上,平均来看,都是盈利的。
当然,30 年的数据不算太长,为了能有更强的说服力,美国著名的对冲基金AQR.发表了报告《A Century of Evidence on Trend-Following Investing》(《趋势投资策略:一个世纪的证据》),报告中列举了100年的数据,证明了"趋势跟踪"策略是有效的,不仅长期来看取得了正收益,而且与各传统大类资产相关性很低,是一种非常好的分散风险的投资方法。
既然上文已从实证的角度说明了"趋势跟踪"策略的有效性,那么此类策略的现实逻辑基础究竟是什么呢?为了回答这个问题,我们可以反过来思考:"趋势跟踪"策略无效的理论基础是什么?就是赫赫有名的"弱有效市场假说"。此假说指出,证券的历史价格已反映了全部的市场信息。历史价格是公开的,所有投资者都可以基于此做出理性的判断,从而形成当前的有效价格。换句话说,当前资产是被完美定价的。
此假说明显不符合事实,投资界的"非理性狂热"和"羊群效应"是明显存在的。也正是这种"非理性"的部分,常常使得证券价格偏离了"实际价值",也就是被错误定价。由于"非理性"的长期存在,"趋势跟踪"策略也能长期有效。
著名的《黑天鹅》作者,纳西姆·塔勒布其实也是类似策略的践行者。不过他实现的方式不一样,他的交易策略是买入那些远离实际价格的期权,平时亏小钱,希望在大波动来临的时候,一把挣足。实际情况就是,他开办的公司在最初几年,表现平平,略有亏损,结果在"911事件"的时候,大发横财。这也符合了他的理念,"极端行情比我们想象的要多而且极端"。正是这一认知误差,使得市场长期低估了"大趋势"出现的可能性。这也是"趋势跟踪"策略长期有效的根本原因。

技术指标
国内的量化CTA大部分使用的都是技术指标构建策略。所谓技术指标,就是价格、成交量、持仓量的数学组合。大体上,技术指标可分为三种类型,具体说明如下。
(1)趋势型
顾名思义,趋势型指标可用于描述并捕捉趋势行情,适合趋势跟踪策略,比如,MACD、SAR等。
(2)超买超卖型(也可以称作"反转型")
股市价格的涨跌中,也会有反复和振荡,比如,KDJ、RSI等。超买超卖型与趋势型刚好相反,此类指标可用于描述并捕捉趋势行情的终结,即反转状态,目标是为了识别震荡和短期的头部底部。

 (3)能量型
能量型的指标是指从成交量的角度考察价格变动的力量,常用于辅助判断信号的强度。比如VOL、OBV等。

主力合约的换月问题

期货合约是会到期的。若要进行较长历史的回测,使用的数据则是由多个合约拼接而换月时会产生"假跳空"的问题。由于不同合约经常会存在一个较大的价差,因此表现在成的,也就是所谓的主力连续合约。使用这种主力连续合约,往往会存在一个问题,就是连续合约上,就会产生一个大的跳空,这个跳空就是"假跳空"。这种"假跳空",最大的影响就是技术指标的计算会失真。比如,实际行情明明没有突破,但由于存在"假跳空"的问题,从而出现了突破。举个例子,比如某期货品种,假设换月前两天的收盘价依次为1020、1000,换月后的价格为1200、1220。那么由于跳空的问题,就好像价格突然上涨了200一样,从而就出现了"假突破"问题,如果不进行复权处理,那么很可能会产生多头信号,然则这个信号其实是错误的。
在进行回测的时候,我们需要处理"假跳空"的问题。为了避免"假跳空"问题带来的误差,一般会采用如下三种方法。
□使用期货的合成指数来进行回测。
□对跳空进行复权处理。
□不使用主力合约,而是使用单独月份的合约来进行分析。

这三种方法的实现成本依次递增,准确性也依次增强。在实际应用中,需要针对自己的具体需求来选择。下面针对这三种方法做一个详细介绍。
1使用合成指数进行回测
合成指数,是指对某个品种各个月份的价格,分配权重,计算出一个综合性指数,用于代表该品种的整体走势。计算指数的时候,算法一般都会保证其连续性,不会出现"假跳空"的问题。市面上很多第三方平台都会提供期货的合成指数。这样就可以直接使用指数进行回测,回测结果也就不会受到"假跳空"问题的影响。但这种方法也存在缺点:一是指数不是真实的价格数据,多少会存在一些误差;二是指数的计算公式往往不是透明的,而且各个平台很可能又是不一样的。使用"黑盒"的指数,总是感觉会有些不踏实,这种方法比较适合进行初步的测试。初步回测通过之后,就可以考虑使用更精确的方法来回测了。
2.对主力连续合约进行复权处理,抹平跳空
复权算法共有好几种,一般包含两个维度。首先,复权可以分为加减复权和乘除复权;其次,可以分为前复权和后复权。这样两两组合,其实就有四种算法了。
为了更清楚地解释复权的概念,这里使用本节开始的例子来进行说明。假设有四天的数据,换月前两天的收盘价依次为1020、1000,换月后的价格为1200、1250,这样在换月时候就会有200的"假跳空"价差了。
先解释加减复权和乘除复权。所谓加减复权是指对跳空产生的价差进行加减平移。比如说,我们将换月后两天的数据,也就是1200和1250,都减去200,得到1000和1050。处理后的数据序列就是:1020、1000、1000、1050。加减复权的好处是,直观易理解,价格序列比较"整洁",不会出现小数点。缺点是收益率会出现偏差,比如处理之前的1200到1250,涨幅是(1250-1200)/1200-0.042,处理之后涨幅是(1050-1000)/1000=0.05。为了保证收益率不出现偏差,就需要使用乘除复权了。顾名思义,乘除复权是指在价格的基础上乘上一个因子。比如这里,换月前后,1000跳空到1200,相当于是白白乘了1.2倍。为了复权,就需要将换月后的数据除以1.2。这样得到的数据序列就是1020和1000,1200/1.2=1000.1250/1.2=1041.66,这样保证每天收益率不会因为复权而产生偏差,缺点是复权之后的数据就没有那么"整洁"了,出现了小数点。在各大股票软件中,一般使用乘除复权。但其实这两种方法都有自己的用武之地。比如,在高频策略的研究中,由于价差变化非常小,因此加减复权带来的收益率偏差也很小,可以忽略不计,这个时候就可以使用加减复权,来保证数据的整洁性。
3.不使用主力连续合约,使用单独的实际合约进行回测
这种方法的缺点是,由于大部分指标都需要针对一段时间内的历史数据进行计算,因此这段时间内,是不会有交易信号的,相当于损失了这段时间内的历史数据,所以这种方法比较适合于小周期策略的回测(比如15分钟策略),因为小周期策略损失的数据会很少,一般就是两三天,影响并不大。

用Python实现复权
上一节节中介绍了处理合约换月的几种方法,本节就来介绍如何编写程序完成复权操作。复权方法共有两种:加减复权和乘除复权。下面将讲解这两种复权方法的实现。
加减复权
假设每次换月的时候,换月前的收盘价和换月后的开盘价就是换月导致的"伪跳空"价差。这个假设并不完全准确,但是这样假设比较简便,容易处理。
这样我们就可以得到相应的算法了,具体步骤如下。
1)初始化复权因子为0。
2)每次换月后,将"伪跳空"累加到复权因子上,算出所有的复权因子。
3)统一将所有的价格都减去复权因子。
在 Pandas 里面,我们可以很方便地用向量化还有对应的函数来实现这个功能,甚至不需要编写循环语句就可以完成。以下是完成加减复权的函数,具体代码如下:

def adjust_price_sum(df):

相关文章:

量化交易全流程(四)

本节目录 数据准备&#xff08;数据源与数据库&#xff09; CTA策略 数据源&#xff1a; 在进行量化分析的时候&#xff0c;最基础的工作是数据准备&#xff0c;即收集数据、清理数据、建立数据库。下面先讨论收集数据的来源&#xff0c;数据来源可分为两大类&#xff1a;免…...

idea 如何在命令行快速打开项目

背景 在命令行中从git仓库检出项目&#xff0c;如何在该命令行下快速用idea 打开当前项目&#xff0c;类似vscode 可以通过在项目根目录下执行 code . 快速打开当前项目。 步骤 以macos 为例 vim /usr/local/bin/idea 输入如下内容 #!/bin/sh open -na "IntelliJ IDE…...

YOLOV8-DET转ONNX和RKNN

目录 1. 前言 2.环境配置 (1) RK3588开发板Python环境 (2) PC转onnx和rknn的环境 3.PT模型转onnx 4. ONNX模型转RKNN 6.测试结果 1. 前言 yolov8就不介绍了&#xff0c;详细的请见YOLOV8详细对比&#xff0c;本文章注重实际的使用&#xff0c;从拿到yolov8的pt检测模型&…...

数量关系 --- 方程

目录 一、代入排除法 例题 练习 二、数字特性 例题 练习 整除特性 例题 倍数特性 普通倍数 因子倍数 比例倍数 例题 练习 三、方程法 例题 练习 四、 不定方程&#xff08;组&#xff09; 例题 练习 一、代入排除法 例题 素数&#xff1a…...

【C语言 模拟实现strlen函数的三种方法】

C语言程序设计笔记---022 C语言之模拟实现strlen函数1、介绍strlen函数2、模拟strlen函数的三种方法2.1、计数器法模拟实现strlen函数2.2、递归法模拟实现strlen函数2.3、指针减指针法模拟实现strlen函数 3、结语 C语言之模拟实现strlen函数 前言&#xff1a; 通过C语言字符串…...

MySQL数据库与表管理《三国志》为例

在数据库管理中,一个典型的应用场景是游戏数据的存储和管理。以经典游戏《三国志》为例,该游戏具有多个角色、任务、装备等元素,如何有效地存储和管理这些数据就成为了一个问题。 本文将通过《三国志》的实例,详细解释如何在MySQL中进行数据库和表的管理。 文章目录 《三国…...

D. Jellyfish and Mex - DP

题面 分析&#xff1a; 题目最终需要达到MEX位0&#xff0c;也就是从最开始的MEX变成0后m的最小值&#xff0c;可以设 d p i dp_i dpi​表示当前MEX为 i i i时&#xff0c;m的最小值&#xff0c;那么就可以根据前一个状态推出后一个状态&#xff0c;也就是假如当前MEX是 i i …...

奥斯卡·王尔德

奥斯卡王尔德 奥斯卡王尔德&#xff08;Oscar Wilde&#xff0c;1854年10月16日—1900年11月30日&#xff09;&#xff0c;出生于爱尔兰都柏林&#xff0c;19世纪英国&#xff08;准确来讲是爱尔兰&#xff0c;但是当时由英国统治&#xff09;最伟大的作家与艺术家之一&#xf…...

IDEA常用快捷键大全

整理了一些IDEA开发常用的快捷键&#xff1a; 快捷键组合实现效果psvm Tab键 / main Tab键public static void main(String[] args)sout Tab键System.out.println()Ctrl X删除当前行Ctrl D复制当前行AltInsert(或右键Generate)生成代码(如get,set方法,构造函数等)CtrlAltT…...

Java之多线程的综合练习二

练习六&#xff1a;多线程统计并求最大值 需求&#xff1a; 在上一题基础上继续完成如下需求&#xff1a; 每次抽的过程中&#xff0c;不打印&#xff0c;抽完时一次性打印(随机) 在此次抽奖过程中&#xff0c;抽奖箱1总共产生了6个奖项。 分别为&#xff1a;10,20,100,50…...

selenium下载安装 -- 使用谷歌驱动碰到的问题

安装教程参考: http://c.biancheng.net/python_spider/selenium.html 1. 谷歌浏览器和谷歌驱动版本要对应(但是最新版本谷歌对应的驱动是没有的,因此要下载谷歌历史其他版本): 谷歌浏览器历史版本下载: https://www.chromedownloads.net/chrome64win/谷歌浏览器驱动下载: http:…...

开放式耳机怎么选择、300之内最好的耳机推荐

开放式耳机凭借不入耳、不伤耳、安全更舒适的佩戴体验&#xff0c;得到了越来越多音乐爱好者和专业人士的青睐。开放式耳机不需要插入耳道&#xff0c;在佩戴时可以更加自然和轻松&#xff0c;减少了长时间佩戴引起的不适感&#xff0c;而且不会完全隔绝外界声音&#xff0c;用…...

git密码提交切换SSH提交

git保存密码 每次登录都要输入密码是显示繁琐&#xff0c;好在git提供了保存密码的功能。 在本地工程文件夹下&#xff0c;.git目录&#xff0c;保存以下配置。 [credential] helper store或者 在git bash命令行&#xff0c;执行命令 git config credential.helper store如…...

数字乡村包括哪些方面?数字乡村应用介绍

数字乡村是指利用物联网、数字化和智能化技术&#xff0c;借助现代数字智能产品、高效信息服务和物联网基础设施&#xff0c;以提高农村居民生活质量&#xff0c;助力拓展经济发展前景。 创建数字村庄有助于缩小城乡社区之间的差距&#xff0c;保障每个人都能平等地享受科技发展…...

弹性资源组件elastic-resource设计(一)-架构

简介 弹性资源组件提供动态资源能力,是分布式系统关键基础设施,分布式datax,分布式索引,事件引擎都需要集群和资源的弹性资源能力,提高伸缩性和作业处理能力。 本文介绍弹性资源组件的设计,包括架构设计和详细设计,指导开发人员代码开发 关键词 作业管理器/资源管理器/…...

C/C++笔试面试真题

C/C++笔试面试真题 1、堆和栈的区别 1、栈由系统自动分配,而堆是人为申请开辟; 2、栈获得的空间较小,而堆获得的空间较大; 3、栈由系统自动分配,速度较快,而堆一般速度比较慢; 4、栈是连续的空间,而堆是不连续的空间。 2、什么是野指针?产生的的原因? 野指针的指向的…...

【Vue3】兄弟组件传参

1. 借助父组件传参 A 组件派发一个事件&#xff0c;修改 flag 的值&#xff0c;先传递给父组件&#xff0c;然后由父组件传递给 B 组件。 缺点&#xff1a;必须由 App.vue 处理中间逻辑。 A.vue <template><div class"A"><h1>A组件</h1>…...

【CSS 中 link 和@import 的区别】

<link> 和 import 都可以用于引入 CSS 文件&#xff0c;但是两者有以下区别&#xff1a; 加载时间&#xff1a;<link> 标签在页面加载时同时加载&#xff0c;而 import 是在页面加载后才开始加载。 兼容性&#xff1a;<link> 标签可以被所有的浏览器正确解释…...

笔记二:odoo搜索、筛选和分组

一、搜索 1、xml代码 <!--搜索和筛选--><record id"view_search_book_message" model"ir.ui.view"><field name"name">book_message</field><field name"model">book_message</field><field…...

Ubuntu Zookeeper开机自启动服务

1、创建service文件 在/lib/systemd/system目录下创建zookeeper.service文件 [Unit] DescriptionApache Zookeeper server Documentationhttp://zookeeper.apache.org Requiresnetwork.target remote-fs.target Afternetwork.target remote-fs.target[Service] Typesimple Env…...

关于Matlab与Python中日期转时间戳不一致的问题

由于 Matlab 中的日期序列号精确到秒&#xff0c;而 Python 的时间戳精确到秒&#xff0c;因此在进行转换时可能会存在精度损失&#xff0c;导致转换结果不完全相同。 将 Python 中的时间戳转换为 Matlab 中的日期序列号&#xff0c;可以使用下方代码进行转换&#xff1a; de…...

【Django 笔记】第一个demo

1. pip 安装 2. django 指令 D:\software\python3\anconda3\Lib\site-packages\django\bin>django-adminType django-admin help <subcommand> for help on a specific subcommand.Available subcommands:[django]checkcompilemessagescreatecachetabledbshelldiff…...

算法通过村第十一关-位运算|白银笔记|高频题目

文章目录 前言1. 位移的妙用1.1 位1的个数1.2 比特位计算1.3 颠倒无符号整数 2. 位实现加减乘除专题2.1 位运算实现加法2.2 递归乘法 总结 前言 提示&#xff1a;他不是不想多明白些&#xff0c;但是每每在该用脑子的时候&#xff0c;他用了感情。 --老舍《黑白李》 与位运算和…...

04、EL和JSTL核心技术

目录 1 EL表达式&#xff08;熟悉&#xff09; 1.1 基本概念 1.2 主要功能 1.3 访问内置对象的数据 1.3.1访问方式 1.3.2 执行流程 1.4 访问请求参数的数据 1.5 访问Bean对象的属性 1.5.1 访问方式 1.5.2 主要区别 1.6 访问集合中的数据 1.7 常用的内置对象 …...

【LeetCode热题100】--148.排序链表

148.排序链表 对链表进行排序最适合的算法就是归并排序&#xff1a; 对链表自顶向下归并排序的过程&#xff1a; 找到链表的中点&#xff0c;以中点为分界&#xff0c;将链表拆分成两个子链表&#xff0c;寻找链表的中点可以使用快慢指针的做法&#xff0c;快指针每次移动 2步…...

分布式并行训练(DP、DDP、DeepSpeed)

[pytorch distributed] 01 nn.DataParallel 数据并行初步 数据并行 vs. 模型并行 数据并行&#xff1a;模型拷贝&#xff08;per device&#xff09;&#xff0c;数据 split/chunk&#xff08;对batch切分&#xff09; 每个device上都拷贝一份完整模型&#xff0c;每个device分…...

Linux- fg命令 bg命令

fg fg是Unix-like操作系统&#xff08;如Linux和macOS&#xff09;中的一个shell内建命令&#xff0c;用于将后台作业带到前台执行。这个命令常用于与bg&#xff08;后台执行&#xff09;命令和jobs&#xff08;列出当前作业&#xff09;命令一起&#xff0c;进行shell中的作业…...

leetcode第362场周赛

2873. 有序三元组中的最大值 I 核心思想&#xff1a;由于这题数据范围比较小&#xff0c;直接枚举i,j,k即可。 2874. 有序三元组中的最大值 II 核心思想&#xff1a;这题是在2873题目的基础上将数据范围进行了增加&#xff0c;意味着我们需要对上面的代码进行优化。两种优化方…...

图神经网络GNN(一)GraphEmbedding

DeepWalk 使用随机游走采样得到每个结点x的上下文信息&#xff0c;记作Context(x)。 SkipGram优化的目标函数&#xff1a;P(Context(x)|x;θ) θ argmax P(Context(x)|x;θ) DeepWalk这种GraphEmbedding方法是一种无监督方法&#xff0c;个人理解有点类似生成模型的Encoder过程…...

多目标平衡优化器黏菌算法(MOEOSMA)求解CEC2020多模式多目标优化

多目标平衡优化器黏菌算法&#xff08;MOEOSMA&#xff09;比现有的多目标黏菌算法具有更好的优化性能。在MOEOSMA中&#xff0c;动态系数用于调整勘探和开采趋势。采用精英存档机制来促进算法的收敛性。使用拥挤距离法来保持Pareto前沿的分布。采用平衡池策略模拟黏菌的协同觅…...

建设银行交学费网站/seo排名技术软件

适用对象 本文档介绍如何使用一台基本配置的云服务器 ECS 实例部署 Java web 项目。适用于刚开始使用阿里云进行建站的个人用户。 配置要求 这里列出的软件版本仅代表写作本文档使用的版本。操作时&#xff0c;请您以实际软件版本为准。 操作系统&#xff1a;CentOS 7.4Tom…...

罗湖网站建设的公司哪家好/自己如何制作网页

算术运算符 对变量和数组进行算术运算。 算术运算符&#xff1a;&#xff0c;-&#xff0c;*&#xff0c;/&#xff0c;% &#xff1a;将连个或者多个数值相加 -&#xff1a;将两个数值相减 *&#xff1a;将两个数值相乘 /&#xff1a;将两个数值相除 %&#xff1a;取相除的余数…...

网站建设中图片/网络营销专家

Alpha版本测试报告 1.测试找出的BUG 1.1 修复的bug * 注册接口后台没完善数据校验&#xff0c;导致会上传一些不合法的数据 * 用户保持登陆态的session内含字段出现错误 * 新增商品时没有对商品图片进行类型限制 * 买下的闲置物品依旧会出现在全部商品的界面 * 显示闲置物品时&…...

成都网站建设优惠活动/网站友情链接交易平台

在浏览器支持的 CSS position: fixed (大多数的桌面浏览器, iOS5, Android 2.2, BlackBerry 6, 和其他)。工具栏使用“固定工具栏”插件将被固定在视图的顶部或底部&#xff0c;当页面自由滚动&#xff0c;固定栏始终浮动在屏幕的顶部或者底部。在浏览器不支持固定定位&#xf…...

如何做一个商城类型的网站/电脑优化软件

参考&#xff1a;函数参数 Note 1.Python的函数定义非常简单&#xff0c;但灵活度却非常大。除了正常定义的必选参数外&#xff0c;还可以使用默认参数、可变参数和关键字参数&#xff0c;使得函数定义出来的接口&#xff0c;不但能处理复杂的参数&#xff0c;还可以简化调用者…...

网站 模板 侵权/湖北seo关键词排名优化软件

多种表示地球地貌的方法。此示例中的数据取自美国商务部海洋及大气管理局 (NOAA) 国家地理数据中心,数据通告编号为 88-MGG-02。 关于地貌数据 数据文件 topo.mat 包含地貌数据。topo 是海拔高度数据,topomap1 是海拔高度的颜色图。 load topo topo topomap1 % load data …...