C++--位图和布隆过滤器
1.什么是位图
所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。比如int 有32位,就可以存放0到31这32个数字在不在某个文件中。当然,其他类型也可以。
2.位图的应用
- 快速查找某个数据是否在一个集合中
- 排序 + 去重
- 求两个集合的交集、并集等
- 操作系统中磁盘块标记
2.1 实际使用场景
1.给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。
由于有40亿个数字,40亿个int的大小为16G,如果放在内存中是,开销是非常大的,只能使用位图来解决,因为一个int可以放32个数据,int的大小为4字节,32比特位,40亿整数的大小大约为512MB,完全可以存放下。
位图解决思路:数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:
通过这样的运算,即可在使用较少的内存的情况下,来快速判断某个数字是否存在。
2.给定100亿个整数,设计算法找到只出现一次的整数?
由于有100亿个整数,所以一定会有重复出现的整数,因为int的最大值大约为42亿。
寻找一个数字,可以使用两个位图,一个为0,另一个为1。来判断是否出现一次,因为00为没有出现的次数,01为出现一次的个数,10为出现2次及2次以上的个数。如图·:
3.给两个文件,分别有100亿个整数,我们只有1G内存,如何找到两个文件交集
100亿个·整数,1G内存,这道题和上一道题差不多,依然使用两各位图,用来存储在或不在的情况,将一个文件的整数放在一个位图中,遍历另一个文件,然后判断,如果两个都为1,则存在,然后将这个数字所在的位置置为0,因为判断交集,只用考虑在或不在,不用考虑个数。
4.1个文件有100亿个int,1G内存,设计算法找到出现次数不超过2次的所有整数
方法和上一道题一样,解法参见上一道题!!!
3.位图的实现:
//位图template<size_t N>class bitset//判断一个数字是否存在{public://初始化bitset(){_bis.resize(N / 32 + 1,0);}//把X位标记为1void set(const size_t& x){size_t i = x / 32;size_t j = x % 32;_bis[i] |= (1 << j);//并}//把X位标记为0,即删除该数字void reset(const size_t& x){size_t i = x / 32;size_t j = x % 32;_bis[i] &= (~(1 << j));//与}//判断是否存在bool test(const size_t& x){size_t i = x / 32;size_t j = x % 32;return _bis[i] & (1 << j);}private:vector<int> _bis;};//判断出现0次,1次,2次以上template<size_t N>class twonbits{public:void set(const size_t& x){if (!_bits.test(x) && !_bitss.test(x))// 0 0变为 0 1{_bitss.set(x);//出现一次}else if (!_bits.test(x) && _bitss.test(x))// 0 1 变为 1 0{_bits.set(x);_bitss.reset(x);//出现两次}else if (_bits.test(x) && !_bitss.test(x))// 1 0变为1 1{_bits.set(x);_bitss.set(x);//出现三次}}//判断出现一次的数字,即01bool is_once(const size_t& x){return !_bits.test(x) && _bitss.test(x);}//出现两次,即10bool is_twice(const size_t& x){return _bits.test(x) && !_bitss.test(x);}//出现三次以上的,即11以上的bool is_ThreeTimes(const size_t& x){return _bits.test(x) && _bitss.test(x);}private:bitset<N> _bits;bitset<N> _bitss;};
4.什么是布隆过滤器
我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。 如何快速查找呢?
1. 用哈希表存储用户记录,缺点:浪费空间
2. 用位图存储用户记录,缺点:位图一般只能处理整形,如果内容编号是字符串,就无法处理了。
3. 将哈希与位图结合,即布隆过滤器。布隆过滤器特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。
5.布隆过滤器的查找
布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。
注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。
比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。所以:布隆过滤器判断不在是准确的,判断在是不准确的。
6.布隆过滤器删除
布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。
比如:删除"tencent"元素,如果直接将该元素所对应的二进制比特位置0,可能“baidu”元素也被删除了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。
一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。
缺陷:
1. 无法确认元素是否真正在布隆过滤器中
2. 存在计数回绕
7.布隆过滤器的优缺点
优点:
1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关
2. 哈希函数相互之间没有关系,方便硬件并行运算
3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算缺点:
1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)
2. 不能获取元素本身
3. 一般情况下不能从布隆过滤器中删除元素
4. 如果采用计数方式删除,可能会存在计数回绕问题
8.布隆过滤器应用场景:
1.给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法
近似算法就是使用布隆过滤器,将两个文件存放在位图中,寻找交集。
精细算法:
由于有100一个query,假设一个query30字节,所以100亿个query大约300G,两个文件600G的大小,我们可以利用哈希切分,将每个文件分为1000分小文件,注意1000份不是平均分的,然后将文件Ai放在set中,再在文件Bi找,如果在,就是交集,然后删除交集,找到Ai和Bi的交集,但是,在不是平均分的情况下,有可能导致其中某个文件体积过于庞大,导致内存不够存放,导致这种原因的有两种情况:
1.大部分都是相同的,少部分由于哈希冲突导致的;
2.大部分都是由于哈希冲突导致的,少部分是相同的;
解决的方法是将文件Ai放入set里面,判断set的insert出现bad_alloc,说明是由于哈希冲突导致的,可以更换哈希函数重新分配一边,如果没有出现bad_alloc,则存在大量重复相同元素,使用set之后将重复元素去掉。然后求交集。
2.给一个超过100G大小的log file, log中存着IP地址, 设计算法找到出现次数最多的IP地址?
可以使用哈希切分,将100G大小的文件平均分为1000个文件,然后将在这1000份文件中使用map计算相同文件的ip地址,算出最多的IP地址。
9.布隆过滤器的实现
//布隆过滤器template<class K,size_t N>class BloomFilter{private://哈希函数,防止哈希冲突struct BKDRHash{size_t operator()(const string& str){size_t hash = 0;for (auto ch : str){hash = hash * 131 + ch;}//cout <<"BKDRHash:" << hash << endl;return hash;}};struct APHash{size_t operator()(const string& str){size_t hash = 0;for (size_t i = 0; i < str.size(); i++){size_t ch = str[i];if ((i & 1) == 0){hash ^= ((hash << 7) ^ ch ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));}}//cout << "APHash:" << hash << endl;return hash;}};struct DJBHash{size_t operator()(const string& str){size_t hash = 5381;for (auto ch : str){hash += (hash << 5) + ch;}//cout << "DJBHash:" << hash << endl;return hash;}};public://是否存在,不准确,判断不在准确//template<class K>void set(const K& key){size_t hash1 = BKDRHash()(key) % N;_bs.set(hash1);size_t hash2 = APHash()(key) % N;_bs.set(hash2);size_t hash3 = DJBHash()(key) % N;_bs.set(hash3);}//判断是否存在//template<class K>bool test(const K& key){size_t hash1 = BKDRHash()(key) % N;if (_bs.test(hash1) == false)return false;size_t hash2 = APHash()(key) % N;if (_bs.test(hash2) == false)return false;size_t hash3 = DJBHash()(key) % N;if (_bs.test(hash3) == false)return false;return true; // 三个都在,即在}private:bitset<N> _bs;};
相关文章:
C++--位图和布隆过滤器
1.什么是位图 所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。比如int 有32位,就可以存放0到31这32个数字在不在某个文件中。当然,其他类型也可以。 2.位…...
linux常识
目录 i.mx6ull开发板配置ip 静态IP配置 命令行配置 配置文件配置 动态IP配置 命令行配置 配置文件配置 为什么编译驱动程序之前要先编译内核? init系统服务 systemv守护进程 systemd守护进程 i.mx6ull开发板配置ip i.mx6ull有两个网卡(eth0和…...
Codeforces Round 901 (Div. 1) B. Jellyfish and Math(思维题/bfs)
题目 t(t<1e5)组样例,每次给出a,b,c,d,m(0<a,b,c,d,m<2的30次方) 初始时,(x,y)(a,b),每次操作,你可以执行以下四种操作之一 ①xx&y,&为与 ②xx|y,|为或 ③yx^y,^为异或 …...
unity 鼠标标记 左键长按生成标记右键长按清除标记,对象转化为子物体
linerender的标记参考 unity linerenderer在Game窗口中任意画线_游戏内编辑linerender-CSDN博客 让生成的标记转化为ARMarks游戏对象的子物体 LineMark.cs using System.Collections; using System.Collections.Generic; using UnityEngine;public class LineMark : MonoBeh…...
解决mac pro 连接4k显示器严重发烫、卡顿问题
介绍个不用花钱的方法。其实mac自带的风扇散热能力还可以的,但是默认比较懒散,可以用一个软件来控制下,激发下它的潜能。 可以下个stats软件 打开传感器开关,以及同步控制风扇开关 以及cpu显示温度 点击控制台上的温度图标&…...
QT的ui设计中改变样式表的用法
在QT的ui设计中,我们右键会弹出一个改变样式表的选项,很多人不知道这个是干什么的。 首先我们来看下具体的界面 首先我们说一下这个功能具体是干嘛的, 我们在设置很多控件在界面上之后,常常都是使用系统默认的样式,但是当有些时候为了美化界面我们需要对一些控件进行美化…...
零基础Linux_10(进程)进程终止(main函数的返回值)+进程等待
目录 1. 进程终止 1.1 main函数的返回值 1.2 进程退出码和错误码 1.3 进程终止的常见方法 2. 进程等待 2.1 进程等待的原因 2.2 wait 函数 2.3 waitpid 函数 2.4 int* status参数 2.5 int options非阻塞等待 本篇完。 1. 进程终止 进程终止指的就是程序执行结束了&…...
【已解决】opencv 交叉编译 ffmpeg选项始终为NO
一、opencv 交叉编译没有 ffmpeg ,会导致视频打不开 在交叉编译时候,发现在 pc 端能用 opencv 打开的视频,但是在 rv1126 上打不开。在网上查了很久,原因可能是 交叉编译过程 ffmpeg 造成的。之前 ffmpeg 是直接用 apt 安装的&am…...
rust生命期
一、生命期是什么 生命期,又叫生存期,就是变量的有效期。 实例1 {let r;{let x 5;r &x;}println!("r: {}", r); }编译错误,原因是r所引用的值已经被释放。 上图中的绿色范围’a表示r的生命期,蓝色范围’b表示…...
实现将一张图片中的目标图片抠出来
要在python中实现将一张图片中的目标图片裁剪出来,需要用到图像处理及机器学习库,以下是一个常用的基本框架 加载图片并使用OpenCV库将其转换为灰度图像 import cv2img cv2.imread(screenshot.jpg) gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)准备模…...
Rust 使用Cargo
Rust 使用技巧 Rust 使用crates 假设你正在编写一个 Rust 程序,要使用一个名为 rand 的第三方库来生成随机数。首先,你需要在 Cargo.toml 文件中添加以下依赖项: toml [dependencies] rand "0.7.3" 然后运行 cargo build&…...
【k8s】集群搭建篇
文章目录 搭建kubernetes集群kubeadm初始化操作安装软件(master、所有node节点)Kubernetes Master初始化Kubernetes Node加入集群部署 CNI 网络插件测试 kubernetes 集群停止服务并删除原来的配置 二进制搭建(单master集群)初始化操作部署etcd集群安装Docker部署master节点解压…...
10.1select并发服务器以及客户端
服务器: #include<myhead.h>//do-while只是为了不让花括号单独存在,并不循环 #define ERR_MSG(msg) do{\fprintf(stderr,"%d:",__LINE__);\perror(msg);\ }while(0);#define PORT 8888//端口号1024-49151 #define IP "192.168.2.5…...
几个好用的测试HTTP请求的网站
Reqres (https://reqres.in):Reqres提供了一个模拟的REST API,您可以使用它来测试POST、GET、PUT等HTTP请求,并获得相应的响应结果。 JSONPlaceholder (https://jsonplaceholder.typicode.com):JSONPlaceholder是一个免费的JSON测…...
kafka简易搭建(windows环境)
1,下载 Apache Kafka 查找 kafka_2.13-3.2.1.tgz 2,java版本需要17以上 3,配置server.properties的log.dirs目录、zookeeper.properties 的dataDir目录 windows反斜杠地址 4,启动 cd D:\app\kafka_2.13-3.2.1 .\bin\window…...
毕业设计选题uniapp+springboot新闻资讯小程序源码 开题 lw 调试
💕💕作者:计算机源码社 💕💕个人简介:本人七年开发经验,擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等,大家有这一块的问题可以一起交流! 💕&…...
Linux系统编程基础:进程控制
文章目录 一.子进程的创建操作系统内核视角下的父子进程存在形式验证子进程对父进程数据的写时拷贝 二.进程等待进程非阻塞等待示例: 三.进程替换内核视角下的进程替换过程:综合利用进程控制系统接口实现简单的shell进程 进程控制主要分为三个方面,分别是:子进程的创建,进程等待…...
选择和操作元素
上一篇文档我们介绍了DOM元素和DOM的获取;其实除了获取DOM,我们也可以去替换DOM元素中的文本 document.querySelector(.message).textContent "🎉Correct Number"● 除此之外,我们可以设置那个数字部分 document.que…...
消息中间件(二)——kafka
文章目录 Apache Kafka综述什么是消息系统?点对点消息类型发布-订阅消息类型 什么是Kafka?优点关键术语Kafka基本原理用例 Apache Kafka综述 在大数据中,会使用到大量的数据。面对这些海量的数据,我们一是需要做到能够收集这些数据…...
量化交易全流程(四)
本节目录 数据准备(数据源与数据库) CTA策略 数据源: 在进行量化分析的时候,最基础的工作是数据准备,即收集数据、清理数据、建立数据库。下面先讨论收集数据的来源,数据来源可分为两大类:免…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...


