当前位置: 首页 > news >正文

全连接网络实现回归【房价预测的数据】

也是分为data,model,train,test

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optimclass FCNet(nn.Module):def __init__(self):super(FCNet,self).__init__()self.fc1 = nn.Linear(331,200)self.fc2 = nn.Linear(200,150)self.fc3 = nn.Linear(150,100)self.fc4 = nn.Linear(100,1)#因为是回归问题,所以输出是1def forward(self,x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = F.relu(self.fc3(x))x = self.fc4(x)return xclass FCNet3(nn.Module):def __init__(self):super(FCNet3,self).__init__()self.fc1 = nn.Linear(331,200)self.fc2 = nn.Linear(200,100)self.fc3 = nn.Linear(100,1)def forward(self,x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x# print(net)

import pandas as pd
import os
import torch# my_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")if torch.cuda.is_available():my_device = torch.device('cuda')
else:my_device = torch.device('cpu')training_data = pd.read_csv('./kaggle_house_pred_train.csv')
testing_data = pd.read_csv('./kaggle_house_pred_test.csv')#拼在一起,方便后面统一处理
all_features = pd.concat(( training_data.iloc[:,1:-1], testing_data.iloc[:,1:]))
# print("train_data.shape:",training_data.shape)
# print("test_data.shape:",testing_data.shape)
# print("all_features:",all_features.shape)
# print(training_data.iloc[:5,:8])#处理:把一些不是数值的那些特征值进行转换,并且归一化,还有就是把空值填充为0
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
# print(numeric_features)all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
#all_features[numeric_features] = all_features[numeric_features]
all_features[numeric_features] = all_features[numeric_features].fillna(0)all_features = pd.get_dummies(all_features, dummy_na = True)
#df = all_features.to_csv('./newdata.csv')
print("all_features:",all_features)#把数据分成训练数据和测试数据
n_train = training_data.shape[0]
#all_features = all_features.astype('float')
train_features = torch.tensor(all_features[:n_train].values, dtype = torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype = torch.float32)
train_labels = torch.tensor(training_data.SalePrice.values.reshape(-1, 1), dtype = torch.float32)
print("train_features.shape:", train_features.shape)
print("test_features.shape:", test_features.shape)
print("train_labels:", train_labels.shape)
#保存转换之后的数据
new_train_data = pd.DataFrame(train_features.numpy()).to_csv('./train_data_normalization.csv')
new_train_labels = pd.DataFrame(train_labels.numpy()).to_csv('./train_labels_normal.csv')train_dataset = torch.utils.data.TensorDataset(train_features,train_labels)
train_dataloadr = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle = True,num_workers = 0,pin_memory = True)#因为要测试 所有就没有真实标签了,dataloader也可以直接只放数据,后面测试时候就是inputs = data
test_dataset = torch.utils.data.TensorDataset(test_features)
test_dataloadr = torch.utils.data.DataLoader(test_dataset,batch_size=32,shuffle = True,num_workers = 0,pin_memory = True)#print(len(train_dataloadr))
# print(len(test_dataloadr))
#print(train_labels)

import torch
import torch.nn as nn
import torch.functional as F
import torch.optim as optim
from Model import FCNet
import data
import matplotlib.pyplot as pltif torch.cuda.is_available():my_device = torch.device('cuda:0')
else:my_device = torch.device('cpu')print(my_device)
net = FCNet().to(my_device)
#print(net)criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(),lr=0.0001)epochs = 2000def train(train_loader):train_loss = []for epoch in range(epochs):loss_sum = 0for i, data in enumerate(train_loader):inputs,labels = dataprint(data)inputs,labels = inputs.to(my_device),labels.to(my_device)optimizer.zero_grad()outputs = net(inputs)print('outputs=',outputs)print('labels=',labels)#因为是回归问题,所以直接放到loss中就可以了loss = criterion(outputs,labels)# print(loss.item())loss.backward()optimizer.step()loss_sum += loss.item()if i%32 == 31:print('Batch {}'.format(i+1),'Loss {}'.format(loss_sum/100))train_loss.append(loss_sum)torch.save(net.state_dict(),'./f4_weights_epoch2000.pth')plt.plot(range(epochs),train_loss)plt.show()train(data.train_dataloadr)
import pandas as pd
import data
import torch
from Model import FCNetif torch.cuda.is_available():my_device = torch.device('cuda:0')
else:my_device = torch.device('cpu')test_data = data.testing_data
test_features = data.test_featuresdef test(test_features):test_features = test_features.to(my_device)preds = net(test_features).detach().to('cpu').numpy()print(preds.squeeze().shape)test_data['SalePrice'] = pd.Series(preds.squeeze())return pd.concat([test_data['Id'],test_data['SalePrice']],axis=1)net = FCNet().to(my_device)
net.load_state_dict(torch.load('./f4_weights_epoch2000.pth'))
res = test(test_features)
res.to_csv('./f4_test_res.csv',index=False)

预测结果还挺接近的

相关文章:

全连接网络实现回归【房价预测的数据】

也是分为data,model,train,test import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optimclass FCNet(nn.Module):def __init__(self):super(FCNet,self).__init__()self.fc1 nn.Linear(331,200)s…...

mysql八股

1、请你说说mysql索引,以及它们的好处和坏处 检索效率、存储资源、索引 索引就像指向表行的指针,是一个允许查询操作快速确定哪些行符合WHERE子句中的条件,并检索到这些行的其他列值的数据结构索引主要有普通索引、唯一索引、主键索引、外键…...

MATLAB算法实战应用案例精讲-【优化算法】狐猴优化器(LO)(附MATLAB代码实现)

代码实现 MATLAB LO.m %======================================================================= % Lemurs Optimizer: A New Metaheuristic Algorithm % for Global Optimization (LO)% This work is published in Journal of "Applied …...

C#WPF动态资源和静态资源应用实例

本文实例演示C#WPF动态资源和静态资源应用 一、资源概述 静态资源(StaticResource)指的是在程序载入内存时对资源的一次性使用,之后就不再访问这个资源了。 动态资源(DynamicResource)指的是在程序运行过程中然会去访问资源。 WPF中,每个界面元素都含有一个名为Resources…...

游戏逆向中的 NoClip 手段和安全应对方式

文章目录 墙壁边界寻找碰撞 NoClip 是一种典型的黑客行为,允许你穿过墙壁,所以 NoClip 又可以认为是避免碰撞体积的行为 墙壁边界 游戏中设置了碰撞体作为墙壁边界,是 玩家对象 和墙壁发生了碰撞,而不是 相机 玩家对象有他的 X…...

nodejs+vue流浪猫狗救助领养elementui

第三章 系统分析 10 3.1需求分析 10 3.2可行性分析 10 3.2.1技术可行性:技术背景 10 3.2.2经济可行性 11 3.2.3操作可行性: 11 3.3性能分析 11 3.4系统操作流程 12 3.4.1管理员登录流程 12 3.4.2信息添加流程 12 3.4.3信息删除流程 13 第四章 系统设计与…...

Css Flex 弹性布局中的换行与溢出处理方法

Css Flex 弹性布局中的换行与溢出处理方法 CSS弹性布局(Flex)是CSS3中的一种新的布局方式,它能够帮助我们更加灵活地布局元素。在Flex弹性布局中,元素的布局仅依赖于父容器的设置,而不再需要复杂的相对或绝对定位。本…...

linux系统与应用

Windows中的硬盘和盘符的关系; 硬盘通常为一块到两块;数量与盘符没有直接关系;一块硬盘可以分为多个盘符,如c,d,e,f,g等;当然理论上也可以一块硬盘只有一个盘符;学习linux时,最好使用固态硬盘&a…...

MySQL的结构化语言 DDL DML DQL DCL

一、SQL结构化语言介绍 数据查询语言DQL:其语句称为“数据检索语言”,用以从库中获取数据,确定数据怎样在应用程序给出,保留select是dql(也是所有sql)用的最多的动词 数据操作语言DML:其语句包括动词insert…...

P5488 差分与前缀和

传送门:洛谷 前题提要:包含了简单的生成函数思想以及多项式乘法,是一道不可多得的多项式好题.故记录一下. 题意:给定一个长为 n 的序列 a,求出其 k 阶差分或前缀和。结果的每一项都需要对 1004535809取模。 对于差分和前缀和我们分开来讨论. 先讨论前缀和部分: …...

uboot启动流程-uboot内存分配

一. uboot启动流程 _main 函数中会调用 board_init_f 函数,本文继续简单分析一下 board_init_f 函数。 具体分析 board_init_f函数的第二部分:内存分配代码。 本文继上一篇文章的学习,地址如下: uboot启动流程-涉及board_init…...

LeetCode 面试题 08.02. 迷路的机器人

文章目录 一、题目二、C# 题解 一、题目 设想有个机器人坐在一个网格的左上角,网格 r 行 c 列。机器人只能向下或向右移动,但不能走到一些被禁止的网格(有障碍物)。设计一种算法,寻找机器人从左上角移动到右下角的路径…...

画CMB天图使用Planck配色方案

使用Planck的配色方案: 全天图: 或者方形图: 使用下面设置即可: import pspy, pixell from pspy.so_config import DEFAULT_DATA_DIR pixell.colorize.mpl_setdefault("planck")此方法不会改变matplotlib默认配色方案…...

成都瀚网科技有限公司:抖店精选联盟怎么用?

抖音精选联盟是抖音电商平台提供的一项服务,旨在为商家提供更多的推广机会和销售渠道。然而,很多人对于如何使用抖店精选联盟以及如何开通这项服务不太了解。本文将为您详细介绍抖店精选联盟的使用和激活流程。 第一节:如何使用抖店精选联盟 …...

第二章:最新版零基础学习 PYTHON 教程(第五节 - Python 输入/输出–如何在Python中打印而不换行?)

一般来说,从 C/C++ 切换到 Python 的人想知道如何在 python 中打印两个或多个变量或语句而不进入新行。由于Python print() 函数默认以换行符结尾。Python 有一个预定义的格式,如果你使用 print(a_variable) 那么它会自动转到下一行。 例子: # 输入:[csdn, csdnforcsdn] …...

C++实现集群聊天服务器

C实现集群聊天服务器 JSON Json是一种轻量级的数据交换模式(也叫做数据序列化方式)。Json采用完全独立于编程语言的文本格式来存储和表示数据。见解和清晰的层次结构使得Json称为理想的数据交换语言。易于阅读和编写。同时也易于支持机器解析和生成&am…...

40 二叉树的直径

二叉树的直径 总结:两个节点之间最长路径 路径的结点数 - 1题解1 递归——DFS 给你一棵二叉树的根节点,返回该树的 直径。 二叉树的直径是指树中任意两个节点之间最长路径的长度。这条路径可能经过也可能不经过根节点 root 。 两节点之间路径的长度由…...

Thread.sleep(0)的作用是什么?

Thread.sleep(0) 的作用是让当前线程放弃剩余的时间片,允许其他具有相同优先级的线程运行。这种操作有时被称为“主动让出CPU时间片”或“线程主动让步”。 通常情况下,当一个线程执行到一段代码时,它会占用CPU的时间片,直到时间…...

浏览器指定DNS

edge--设置 https://dns.alidns.com/dns-query...

虚拟机安装 centos

title: 虚拟机安装 centos createTime: 2020-12-13 12:00:27 updateTime: 2020-12-13 12:00:27 categories: linux tags: 虚拟机安装 centos 路线图 主机(宿主机) —> centos --> docker --> docker 镜像 --> docker 容器 — docker 服务 1.前期准备 一台 主机 或…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

基于服务器使用 apt 安装、配置 Nginx

🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

网站指纹识别

网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...

云原生安全实战:API网关Kong的鉴权与限流详解

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...