当前位置: 首页 > news >正文

分布式应用程序协调服务 ZooKeeper 详解

目录

1、ZooKeeper简介

2、ZooKeeper的使用场景

3、ZooKeeper设计目的

4、ZooKeeper数据模型

5、ZooKeeper几个重要概念

5.1、ZooKeeper Session

5.2、ZooKeeper Watch

5.3、Consistency Guarantees

6、ZooKeeper的工作原理

6.1、Leader Election

6.2、Leader工作流程

6.3、Follower工作流程

6.4、Zab: Broadcasting State Updates

7、ZooKeeper的读写流程

7.1、读流程分析

7.2、写流程分析

7.3、ZooKeeper并发读写情况分析

 8、ZooKeeper集群


VC++常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)icon-default.png?t=N7T8https://blog.csdn.net/chenlycly/article/details/124272585C++软件异常排查从入门到精通系列教程(专栏文章列表,欢迎订阅,持续更新...)icon-default.png?t=N7T8https://blog.csdn.net/chenlycly/article/details/125529931C++软件分析工具从入门到精通案例集锦(专栏文章正在更新中...)icon-default.png?t=N7T8https://blog.csdn.net/chenlycly/article/details/131405795C/C++基础与进阶(专栏文章,持续更新中...)icon-default.png?t=N7T8https://blog.csdn.net/chenlycly/category_11931267.html

1、ZooKeeper简介

       ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

       ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。ZooKeeper包含一个简单的原语集,提供Java和C的接口。ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口,代码在$zookeeper_home\src\recipes。其中分布锁和队列有Java和C两个版本,选举只有Java版本。

2、ZooKeeper的使用场景

        ZooKeeper广泛地应用于各大Web后台系统中,其应用场景如下:

1)配置中心:Zookeeper可以用来存储和管理配置信息,例如集群中的机器配置、服务地址配置等。通过Zookeeper,可以将配置信息统一管理,同时实现动态加载和更新。
2)统一命名服务:Zookeeper可以用来实现命名服务,例如将集群中的机器名称和IP地址进行映射,或者将服务的唯一标识和实际地址进行映射。这样,客户端可以通过名称或标识来访问服务,而不需要知道服务的实际地址。
3)分布式锁:Zookeeper可以用来实现分布式锁,通过创建一个特殊的节点,各个节点可以竞争同一个锁,从而保证分布式系统中的一致性。
4)分布式队列:Zookeeper可以用来实现分布式队列,通过创建一个特殊的节点,各个节点可以加入或离开队列,同时队列中的节点可以按照一定的顺序进行排序。

3、ZooKeeper设计目的

1)最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。

2)可靠性:具有简单、健壮、良好的性能,如果消息m被到一台服务器接受,那么它将被所有的服务器接受。

3)实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。

4)等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。

5)原子性:更新只能成功或者失败,没有中间状态。

6)顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。

4、ZooKeeper数据模型

        Zookeeper会维护一个具有层次关系的数据结构,它非常类似于一个标准的文件系统,如图所示:

Zookeeper这种数据结构有如下这些特点:

1)每个子目录项如NameService都被称作为znode,这个znode是被它所在的路径唯一标识,如Server1这个znode的标识为/NameService/Server1。

2)znode可以有子节点目录,并且每个znode可以存储数据,注意EPHEMERAL(临时的)类型的目录节点不能有子节点目录。

3)znode是有版本的(version),每个znode中存储的数据可以有多个版本,也就是一个访问路径中可以存储多份数据,version号自动增加。

4)znode的类型:

Persistent 节点,一旦被创建,便不会意外丢失,即使服务器全部重启也依然存在。每个 Persist 节点即可包含数据,也可包含子节点。
Ephemeral 节点,在创建它的客户端与服务器间的 Session 结束时自动被删除。服务器重启会导致 Session 结束,因此 Ephemeral 类型的 znode 此时也会自动删除。
Non-sequence 节点,多个客户端同时创建同一 Non-sequence 节点时,只有一个可创建成功,其它匀失败。并且创建出的节点名称与创建时指定的节点名完全一样。
Sequence 节点,创建出的节点名在指定的名称之后带有10位10进制数的序号。多个客户端创建同一名称的节点时,都能创建成功,只是序号不同。
5)znode可以被监控,包括这个目录节点中存储的数据的修改,子节点目录的变化等,一旦变化可以通知设置监控的客户端,这个是Zookeeper的核心特性,Zookeeper的很多功能都是基于这个特性实现的。

6)ZXID:每次对Zookeeper的状态的改变都会产生一个zxid(ZooKeeper Transaction Id),zxid是全局有序的,如果zxid1小于zxid2,则zxid1在zxid2之前发生。

5、ZooKeeper几个重要概念

       这里重点讲一下ZooKeeper中的几个重要概念。 

5.1、ZooKeeper Session

       Client和Zookeeper集群建立连接,整个session状态变化如图所示:

如果Client因为Timeout和Zookeeper Server失去连接,client处在CONNECTING状态,会自动尝试再去连接Server,如果在session有效期内再次成功连接到某个Server,则回到CONNECTED状态。

注意:如果因为网络状态不好,client和Server失去联系,client会停留在当前状态,会尝试主动再次连接Zookeeper Server。client不能宣称自己的session expired,session expired是由Zookeeper Server来决定的,client可以选择自己主动关闭session。

5.2、ZooKeeper Watch

       Zookeeper watch是一种监听通知机制。Zookeeper所有的读操作getData(), getChildren()和 exists()都可以设置监视(watch),监视事件可以理解为一次性的触发器,官方定义如下: a watch event is one-time trigger, sent to the client that set the watch, whichoccurs when the data for which the watch was set changes。Watch的三个关键点:

1)(一次性触发)One-time trigger

当设置监视的数据发生改变时,该监视事件会被发送到客户端,例如,如果客户端调用了getData("/znode1", true) 并且稍后 /znode1 节点上的数据发生了改变或者被删除了,客户端将会获取到 /znode1 发生变化的监视事件,而如果 /znode1 再一次发生了变化,除非客户端再次对/znode1 设置监视,否则客户端不会收到事件通知。

2)(发送至客户端)Sent to the client

Zookeeper客户端和服务端是通过 socket 进行通信的,由于网络存在故障,所以监视事件很有可能不会成功地到达客户端,监视事件是异步发送至监视者的,Zookeeper 本身提供了顺序保证(ordering guarantee):即客户端只有首先看到了监视事件后,才会感知到它所设置监视的znode发生了变化(a client will never see a change for which it has set a watch until it first sees the watch event)。网络延迟或者其他因素可能导致不同的客户端在不同的时刻感知某一监视事件,但是不同的客户端所看到的一切具有一致的顺序。

3)(被设置 watch 的数据)The data for which the watch was set

这意味着znode节点本身具有不同的改变方式。你也可以想象 Zookeeper 维护了两条监视链表:数据监视和子节点监视(data watches and child watches) getData() 和exists()设置数据监视,getChildren()设置子节点监视。或者你也可以想象 Zookeeper 设置的不同监视返回不同的数据,getData() 和 exists() 返回znode节点的相关信息,而getChildren() 返回子节点列表。因此,setData() 会触发设置在某一节点上所设置的数据监视(假定数据设置成功),而一次成功的create() 操作则会出发当前节点上所设置的数据监视以及父节点的子节点监视。一次成功的 delete操作将会触发当前节点的数据监视和子节点监视事件,同时也会触发该节点父节点的child watch。

       Zookeeper 中的监视是轻量级的,因此容易设置、维护和分发。当客户端与 Zookeeper 服务器失去联系时,客户端并不会收到监视事件的通知,只有当客户端重新连接后,若在必要的情况下,以前注册的监视会重新被注册并触发,对于开发人员来说这通常是透明的。只有一种情况会导致监视事件的丢失,即:通过exists()设置了某个znode节点的监视,但是如果某个客户端在此znode节点被创建和删除的时间间隔内与zookeeper服务器失去了联系,该客户端即使稍后重新连接 zookeeper服务器后也得不到事件通知。

5.3、Consistency Guarantees

       Zookeeper是一个高效的、可扩展的服务,read和write操作都被设计为快速的,read比write操作更快。

1)顺序一致性(Sequential Consistency):从一个客户端来的更新请求会被顺序执行。

2)原子性(Atomicity):更新要么成功要么失败,没有部分成功的情况。

3)唯一的系统镜像(Single System Image):无论客户端连接到哪个Server,看到系统镜像是一致的。

4)可靠性(Reliability):更新一旦有效,持续有效,直到被覆盖。

5)时间线(Timeliness):保证在一定的时间内各个客户端看到的系统信息是一致的。

6、ZooKeeper的工作原理

       在zookeeper的集群中,各个节点共有下面3种角色和4种状态:

角色:leader、follower、observer
状态:leading、following、observing、looking

       Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议(ZooKeeper Atomic Broadcast protocol)。Zab协议有两种模式,它们分别是恢复模式(Recovery选主)和广播模式(Broadcast同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。

       为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。

       每个Server在工作过程中有4种状态:

LOOKING:当前Server不知道leader是谁,正在搜寻。

LEADING:当前Server即为选举出来的leader。

FOLLOWING:leader已经选举出来,当前Server与之同步。

OBSERVING:observer的行为在大多数情况下与follower完全一致,但是他们不参加选举和投票,而仅仅接受(observing)选举和投票的结果。

6.1、Leader Election

       当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:

1)选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;

2)选举线程首先向所有Server发起一次询问(包括自己);

3)选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次选举的投票记录表中;

4)收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;

5)线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数,设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。

       通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1。

       每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。

      fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。

6.2、Leader工作流程

        Leader主要有三个功能:

1)恢复数据;

2)维持与follower的心跳,接收follower请求并判断follower的请求消息类型;

3)follower的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。

PING消息是指follower的心跳信息;REQUEST消息是follower发送的提议信息,包括写请求及同步请求;ACK消息是follower的对提议的回复,超过半数的follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。

6.3、Follower工作流程

        Follower主要有四个功能:

1)向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);

2)接收Leader消息并进行处理;

3)接收Client的请求,如果为写请求,发送给Leader进行投票;

4)返回Client结果。

       Follower的消息循环处理如下几种来自Leader的消息:

1)PING消息:心跳消息

2)PROPOSAL消息:Leader发起的提案,要求Follower投票

3)COMMIT消息:服务器端最新一次提案的信息

4)UPTODATE消息:表明同步完成

5)REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息

6)SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。

6.4、Zab: Broadcasting State Updates

        Zookeeper Server接收到一次request,如果是follower,会转发给leader,Leader执行请求并通过Transaction的形式广播这次执行。Zookeeper集群如何决定一个Transaction是否被commit执行?通过“两段提交协议”(a two-phase commit):

1)Leader给所有的follower发送一个PROPOSAL消息。

2)一个follower接收到这次PROPOSAL消息,写到磁盘,发送给leader一个ACK消息,告知已经收到。

3)当Leader收到法定人数(quorum)的follower的ACK时候,发送commit消息执行。

       Zab协议保证:

1)如果leader以T1和T2的顺序广播,那么所有的Server必须先执行T1,再执行T2。
2)如果任意一个Server以T1、T2的顺序commit执行,其他所有的Server也必须以T1、T2的顺序执行。

       “两段提交协议”最大的问题是如果Leader发送了PROPOSAL消息后crash或暂时失去连接,会导致整个集群处在一种不确定的状态(follower不知道该放弃这次提交还是执行提交)Zookeeper这时会选出新的leader,请求处理也会移到新的leader上,不同的leader由不同的epoch标识。切换Leader时,需要解决下面两个问题:

1)Never forget delivered messages

Leader在COMMIT投递到任何一台follower之前crash,只有它自己commit了。新Leader必须保证这个事务也必须commit。

2)Let go of messages that are skipped

Leader产生某个proposal,但是在crash之前,没有follower看到这个proposal。该server恢复时,必须丢弃这个proposal。

       Zookeeper会尽量保证不会同时有2个活动的Leader,因为2个不同的Leader会导致集群处在一种不一致的状态,所以Zab协议同时保证:

1)在新的leader广播Transaction之前,先前Leader commit的Transaction都会先执行。
2)在任意时刻,都不会有2个Server同时有法定人数(quorum)的支持者。这里的quorum是一半以上的Server数目,确切的说是有投票权力的Server(不包括Observer)。

7、ZooKeeper的读写流程

      来详细看下ZooKeeper的读写流程,以及ZooKeeper在并发情况下的读写控制。以求对ZooKeeper有进一步的了解。

7.1、读流程分析

        读流程如下图所示:


因为ZooKeeper集群中所有的server节点都拥有相同的数据,所以读的时候可以在任意一台server节点上,客户端连接到集群中某一节点,读请求,然后直接返回。当然因为ZooKeeper协议的原因(一半以上的server节点都成功写入了数据,这次写请求便算是成功),读数据的时候可能会读到数据不是最新的server节点,所以比较推荐使用watch机制,在数据改变时,及时感应到。

7.2、写流程分析

        写流程如下图所示:

当一个客户端进行写数据请求时,会指定ZooKeeper集群中的一个server节点,如果该节点为Follower,则该节点会把写请求转发给Leader,Leader通过内部的协议进行原子广播,直到一半以上的server节点都成功写入了数据,这次写请求便算是成功,然后Leader便会通知相应Follower节点写请求成功,该节点向client返回写入成功响应。

7.3、ZooKeeper并发读写情况分析

       我们已经知道ZooKeeper的数据模型是层次型,类似文件系统,不过ZooKeeper的设计目标定位是简单、高可靠、高吞吐、低延迟的内存型存储系统,因此它的value不像文件系统那样适合保存大的值,官方建议保存的value大小要小于1M,key为路径。

       ZooKeeper的层次模型是通过ConcurrentHashMap实现的,key为path,value为DataNode,DataNode保存了znode中的value、children、 stat等信息。而ConcurrentHashMap是线程安全的Hash Table,它采用了锁分段技术来减少锁竞争,提高性能的同时又保证了并发安全。

       对于ZooKeeper来讲,ZooKeeper的写请求由Leader处理,Leader能够保证并发写入的有序性,即同一时刻,只有一个写操作被批准,然后对该写操作进行全局编号,最后进行原子广播写入,所以ZooKeeper的并发写请求是顺序处理的,而底层又是用了ConcurrentHashMap,理所当然写请求是线程安全的。而对于并发读请求,同理,因为用了ConcurrentHashMap,当然也是线程安全的了。总结来说,ZooKeeper的并发读写是线程安全的。

       但是对于ZooKeeper的客户端来讲,如果使用了watch机制,在进行了读请求但是watch znode前这段时间中,如果znode的数据变化了,客户端是无法感知到的,这段时间客户端的数据就有一定的滞后性了,只有当下次数据变化后,客户端才能感知到,所以对于客户端来说,数据是最终一致性。

 8、ZooKeeper集群

       zookeeper集群配置:

tickTime=2000
initLimit=10
syncLimit=5
dataDir=/home/zookeeper-3.5.14/data
clientPort=2181
autopurge.snapRetainCount=5
autopurge.purgeInterval=2server.1= 172.16.160.59.111:2888:3888
server.2= 172.16.160.112:2888:3888
server.3= 172.16.160.113:2888:3888

日志配置:

# log4j.properties修改:
zookeeper.root.logger=INFO, ROLLINGFILE# zkEnv.sh修改:
if [ "x${ZOO_LOG_DIR}" = "x" ]
thenZOO_LOG_DIR="/home/zookeeper-3.5.14/log"
fiif [ "x${ZOO_LOG4J_PROP}" = "x" ]
thenZOO_LOG4J_PROP="INFO,ROLLINGFILE"
fi

启停:bin/zkServer.sh start/stop/status 

zk client命令:bin/zkCli.sh -server localhost:2181。

相关文章:

分布式应用程序协调服务 ZooKeeper 详解

目录 1、ZooKeeper简介 2、ZooKeeper的使用场景 3、ZooKeeper设计目的 4、ZooKeeper数据模型 5、ZooKeeper几个重要概念 5.1、ZooKeeper Session 5.2、ZooKeeper Watch 5.3、Consistency Guarantees 6、ZooKeeper的工作原理 6.1、Leader Election 6.2、Leader工作流…...

Anniversary party(树形dp 基础题)

1.题目大意 There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor relation forms a tree rooted at the rector V. E. Tretyakov. In …...

Junit的常用操作

注:本篇文章讲解的是junit5 目录 Juint是什么 Juint需要导入的依赖 Juint常用注解 Junit执行顺序 参数化 断言 测试套件 Juint是什么 Juint 是 Java 的一个单元测试框架. 也是回归测试框架. 使用 Junit 能让我们快速的完成单元测试。 注意:Junit 测试也是程序…...

Elasticsearch安装并使用Postman访问

Elasticsearch,一个强大的开源搜索和分析引擎,已经在全球范围内被广泛应用于各种场景,包括网站搜索、日志分析、实时应用等。由于其强大的功能和灵活性,Elasticsearch 已经成为大数据处理的重要工具。然而,对于许多初次…...

Pytorch深度学习训练模型保存问题,找不到保存路径

执行torch.save(net.state_dict(), save_path_pth)报错: RuntimeError: Parent directory D:\xxxxxxxxxxx\weights does not exist. 将文件路径的中文改成全英文就可以了。 注意:这个代码在torch1.7版本无报错,但是在1.13.1版本报错。在linu…...

数据结构与算法之堆: Leetcode 23. 合并 K 个升序链表 (Typescript版)

合并 K 个升序链表 https://leetcode.cn/problems/merge-k-sorted-lists/ 描述 给你一个链表数组,每个链表都已经按升序排列请你将所有链表合并到一个升序链表中,返回合并后的链表 示例 1 输入:lists [[1,4,5],[1,3,4],[2,6]] 输出&…...

代码随想录算法训练营第五十七天 | 392.判断子序列 115.不同的子序列

1. 判断子序列 392. 判断子序列 - 力扣(LeetCode) dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度。 class Solution {public boolean isSubsequence(String s, String t) {//dp[i][j] 表示…...

Kafka日志索引详解以及生产常见问题分析与总结

文章目录 1、Kafka的Log日志梳理1.1、Topic下的消息是如何存储的?1.1.1、 log文件追加记录所有消息1.1.2、 index和timeindex加速读取log消息日志。 1.2、文件清理机制1.2.1、如何判断哪些日志文件过期了1.2.2、过期的日志文件如何处理 1.3、Kafka的文件高效读写机制…...

vue中 css scoped原理

Vue中css的逻辑是先放子组件,然后放父组件,所以同样的css类名,子组件会被父组件覆盖 html 如下 子被父覆盖 scoped是通过给组件加hash值,锁定组件。 父子组件均scoped的情况下,子仍会覆盖 还是被覆盖了 如何避免被…...

tf.compat.v1.global_variables()

tf.global_variables tf.global_variables() 是 TensorFlow 1.x 中的一个函数,它返回图中所有的全局变量。在 TensorFlow 2.x 中,这个函数已经被移除了,取而代之的是 tf.compat.v1.global_variables()。 然而,在 TensorFlow 2.x …...

登录注册实现

一、前端页面注册到Vue 1.创建登录和注册组件 <template><div>login</div></template><script> export default {name: HomeView,data() {return {}},methods: {}, } </script><template><div>register</div></tem…...

Push rejected: Push to origin/master was rejected

Push rejected: Push to origin/master was rejected 原因&#xff1a;推拒绝&#xff1a;推送到起源/主人被拒绝 解决方案如下&#xff1a; 方案1&#xff1a; 1.在Idea打开终端 方案2&#xff1a; 1、在对应项目文件里打开 Git Bash 然后依次输入&#xff1a; git pull …...

在线OJ项目核心思路

文章目录 在线OJ项目核心思路1. 项目介绍2.预备知识理解多进程编程为啥采用多进程而不使用多线程?标准输入&标准输出&标准错误 3.项目实现题目API实现相关实体类定义新增/修改题目获取题目列表 编译运行编译运行流程 4.统一功能处理 在线OJ项目核心思路 1. 项目介绍 …...

Spring MVC:数据绑定

Spring MVC 数据绑定数据类型转换数据格式化数据校验 附 数据绑定 数据绑定&#xff0c;指 Web 页面上请求和响应的数据与 Controller 中对应处理方法上的对象绑定&#xff08;即是将用户提交的表单数据绑定到 Java 对象中&#xff09;。 过程如下&#xff1a; ServletRequest…...

STM32CubeMX学习笔记-USB接口使用(HID按键)

STM32CubeMX学习笔记-USB接口使用&#xff08;HID按键&#xff09; 一、USB简介1.1 USB HID简介 二、新建工程1. 打开 STM32CubeMX 软件&#xff0c;点击“新建工程”2. 选择 MCU 和封装3. 配置时钟4. 配置调试模式 三、USB3.1 参数配置3.2 引脚配置3.3 配置时钟3.4 USB Device…...

C#,数值计算——Ranq2的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Backup generator if Ranq1 has too short a period and Ran is too slow.The /// period is 8.5E37. Calling conventions same as Ran, above. /// </summary> …...

C/C++ 数据结构 - 链表

1.单链表 https://blog.csdn.net/qq_36806987/article/details/79858957 1 #include<stdio.h>2 #include<stdlib.h>3 4 /*结构体部分*/5 typedef struct Node6 {7 int data; //数值域8 struct Node *next; //指针域9 }N;10 11 N *Init() //初始化单…...

【算法基础】一文掌握十大排序算法,冒泡排序、插入排序、选择排序、归并排序、计数排序、基数排序、希尔排序和堆排序

目录 1 冒泡排序&#xff08;Bubble Sort&#xff09; 2 插入排序&#xff08;Insertion Sort&#xff09; 3 选择排序&#xff08;Selection Sort&#xff09; 4. 快速排序&#xff08;Quick Sort&#xff09; 5. 归并排序&#xff08;Merge Sort&#xff09; 6 堆排序 …...

javascript二维数组(3):指定数组元素的特定属性进行搜索

js中对数组&#xff0c; var data [{“name”: “《西游记》”, “author”: “吴承恩”, “cat”: “A级书刊”, “num”: 3},{“name”: “《三国演义》”, “author”: “罗贯中”, “cat”: “A级书刊”, “num”: 8},{“name”: “《红楼梦》”, “author”: “曹雪芹”,…...

使用Qt进行HTTP通信的方法

文章目录 1 HTTP协议简介1.1 HTTP协议的历史和发展1.2 HTTP协议的特点1.3 HTTP的工作过程1.4 请求报文1.5 响应报文 2 使用Qt进行HTTP通信2.1 Qt的HTTP通信类2.2 HTTP通信过程 3 JSON3.1 cJSON库简介3.2 cJSON库的设计思想和数据结构3.3 cJSON库的使用方法 1 HTTP协议简介 1.1…...

第45节——页面中修改redux里的数据

一、什么是action 在 Redux 中&#xff0c;Action 是一个简单的 JavaScript 对象&#xff0c;用于描述对应应用中的某个事件&#xff08;例如用户操作&#xff09;所发生的变化。它包含了一个 type 属性&#xff0c;用于表示事件的类型&#xff0c;以及其他一些可选的数据。 …...

软考 系统架构设计师系列知识点之软件架构风格(2)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之软件架构风格&#xff08;1&#xff09; 这个十一注定是一个不能放松、保持“紧”的十一。由于报名了全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff0c;11月4号就要考试&#xff0c;因此…...

【C++11】Lambda 表达式:基本使用 和 底层原理

文章目录 Lambda 表达式1. 不考虑捕捉列表1.1 简单使用介绍1.2 简单使用举例 2. 捕捉列表 [ ] 和 mutable 关键字2.1 使用方法传值捕捉传引用捕捉 2.2 捕捉方法一览2.3 使用举例 3. lambda 的底层分析 Lambda 表达式 书写格式&#xff1a; [capture_list](parameters) mutabl…...

【网络安全---ICMP报文分析】Wireshark教程----Wireshark 分析ICMP报文数据试验

一&#xff0c;试验环境搭建 1-1 试验环境示例图 1-2 环境准备 两台kali主机&#xff08;虚拟机&#xff09; kali2022 192.168.220.129/24 kali2022 192.168.220.3/27 1-2-1 网关配置&#xff1a; 编辑-------- 虚拟网路编辑器 更改设置进来以后 &#xff0c;先选择N…...

【Docker】Docker的应用包含Sandbox、PaaS、Open Solution以及IT运维概念的详细讲解

前言 Docker 是一个开源的应用容器引擎&#xff0c;让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。 &#x1f4d5;作者简介&#xff1a;热…...

Java Applet基础

Java Applet基础 目录 Java Applet基础 Applet的生命周期 "Hello, World" Applet: Applet 类 Applet的调用 获得applet参数 指定applet参数 应用程序转换成Applet 事件处理 显示图片 播放音频 applet是一种Java程序。它一般运行在支持Java的Web浏览器内。因…...

【记录】IDA|IDA怎么查看当前二进制文件自动分析出来的内存分布情况(内存范围和读写性)

IDA版本&#xff1a;7.6 背景&#xff1a;我之前一直是直接看Text View里面的地址的首尾地址来判断内存分布情况的&#xff0c;似乎是有点不准确&#xff0c;然后才想到IDA肯定自带查看内存分布情况的功能&#xff0c;而且很简单。 可以通过View-Toolbars-Segments&#xff0c…...

LIMS实验室信息管理系统源码 基于计算机的数据处理技术、数据存储技术、网络传输技术、自动化仪器分析技术于一体

LIMS 是一个集现代化管理思想与基于计算机的数据处理技术、数据存储技术、网络传输技术、自动化仪器分析技术于一体&#xff0c;以实验室业务和管理工作为核心&#xff0c;遵循实验室管理国际规范&#xff0c;实现对实验室全方位管理的信息管理系统。 LIMS将样品管理、数据管理…...

有效括号相关

相关题目 20. 有效的括号 921. 使括号有效的最少添加 1541. 平衡括号字符串的最少插入次数 32. 最长有效括号 # 20. 有效的括号 class Solution:def isValid(self, s: str) -> bool:stack []for pare in s:if pare in ([{:stack.append(pare)if not stack or (pare ) and…...

浅谈泛型擦除

文章目录 泛型擦除(1)转换泛型表达式(2)转换泛型方法泛型擦除带来的问题 泛型擦除 在编码阶段使用泛型时加上的类型参数&#xff0c;会被编译器在编译阶段去掉&#xff0c;这个过程叫做泛型擦除。 泛型主要用于编译阶段。在编译后生成的Java字节码文件中不包含泛型中的类型信息…...

海淀网站建设公司/企业全网推广公司

一.简介mysqlslap是mysql自带的基准测试工具优点:查询数据,语法简单,灵活容易使用.该工具可以模拟多个客户端同时并发的向服务器发出查询更新,给出了性能测试数据而且提供了多种引擎的性能比较。测试时候会创建一个mysqlslap库&#xff0c;并创建一个t1表&#xff0c;进行增删改…...

网站建设皖icp/产品推广策划方案怎么做

1. 通过 浏览器的控件使用$_FILE 和服务器后端进行交互上传 True: { "name": "HD.Club-4K-Chimei-inn-20mbps.mp4", "type": "video\/mp4", "tmp_name": "D:\\mySoft\\wamp64\\tmp\\phpDD30.tmp", …...

深圳网站建设企业/防恶意点击软件

由于不懂程序。 所以选择了先做一个静态的网站。在考虑是用table&#xff0c;还是用 divcss 最后选择了table&#xff0c;因为是个仿站&#xff0c;做出来美观效果要尽量一样才可以。 现在网站已经上线一个月&#xff0c;想给自己点时间&#xff0c;第一&#xff0c;把整个页面…...

wordpress去除无用标签/百度怎么搜索关键词

在使用FTP向服务器传送问文件的时候&#xff0c;要注意选择传输模式&#xff0c;如果服务器用的是linux,那么一定要选二进制模式,否则传送文件的时候会出错转载于:https://blog.51cto.com/wll2015/1655774...

网站设计的基本步骤和方法/广州网站优化

在我们登录一些网站、应用、游戏时&#xff0c;见到动态验证码的频率越来越多了。最常见的应该就是Google Authenticator&#xff0c;暴雪安全令之类的应用&#xff0c;通过不断变换的动态数字来最大限度的保证账号的数据安全。今天 Gitee 推荐的这款开源项目&#xff0c;是依托…...

太原市建设拆迁中心网站/seo排名工具给您好的建议

一次MySQL5.7线上故障分析 原创 2017-01-03 邹宇 ACMUGACMUG征集原创技术文章。详情请添加 A_CMUG或者扫描文末二维码关注我们的微信公众号。有奖征稿&#xff0c;请发送稿件至&#xff1a;acmugacmug.com。 3306现金有奖征稿说明&#xff1a;知识无价&#xff0c;劳动有偿&…...