当前位置: 首页 > news >正文

【数据结构】堆的应用-----TopK问题

目录

一、前言

二、Top-k问题 

 💦解法一:暴力排序

💦解法二:建立N个数的堆

💦解法三:建立K个数的堆(最优解)

三、完整代码和视图 

四、共勉


一、前言

在之前的文章中,已经详细的讲解了二叉树、堆、堆排序。那么关于堆还有一个比较有意思的题,就是TopK问题。

如果对堆和二叉树还不够了解的可以看看我之前的文章哦!!!

详解二叉树和堆

二、Top-k问题 

Top-k问题:在 N 个数中,找出前 K 个(最大/最小)的元素,一般情况下数据量 N 都远大于 k。

Top-k问题在生活中是非常的常见,比如游戏中某个大区某个英雄熟练度最高的前10个玩家的排名,我们就要根据每个玩家对该英雄的熟练度进行排序,可能有200万个玩家,但我只想选出前10个,要对所有人去排个序吗?显然没这个必要。

再比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

 💦解法一:暴力排序

对于Top-K问题,首先想到的最简单直接的方式就是排序。

我们用堆排序,其时间复杂度为:O(N*log2N)。

但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。


💦解法二:建立N个数的堆

建一个 N 个数的堆(C++中可用优先级队列priority_queue),不断的选数,选出前 k 个。

时间复杂度:建N个数的堆为O(N),获取堆顶元素 (也即是最值) 并删除掉堆顶元素为O(log2N),上述操作重复 k 次,所以时间复杂度为O(N+k*log2N)。

【思考】

能否再优化一下呢?假设 N 是 10 亿数,内存中放不下,是放在文件中的。前面两个方法都不能用了。


💦解法三:建立K个数的堆(最优解)

✨基本思想:

用数据集合中前K个元素来建堆。

找前 k 个最大的元素,则建小堆

找前 k 个最小的元素,则建大堆

用剩余的 N-K 个元素依次与堆顶元素来比较,不满足则删除堆顶元素,再插入。

找前 k 个最大的元素,大于堆顶元素,则删除堆顶元素,再插入

找前 k 个最小的元素,小于堆顶元素,则删除堆顶元素,再插入

将剩余的 N-K 个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。


✨时间复杂度:

▶ 建 k 个元素的堆为O(K);
▶ 遍历剩余的 N-K 个元素的时间代价为O(N-K),假设运气很差,每次遍历都入堆调整;
▶ 入堆调整:删除堆顶元素和插入元素都为O(log2K);
▶ 所以时间复杂度为O(k + (N-K)log2K)。当 N 远大于 K 时,为O(N*log2K),这种解法更优。

 

✨假如要找出最大的前 10 个数

▶ 建立 10 个元素的小堆,数据集合中前 10 个元素依次放入小堆,此时的堆顶元素是堆中最小的元素,也是堆里面第 10 个最小的元素,
▶  然后把数据集合中剩下的元素与堆顶比较,若大于堆顶则去掉堆顶,再将其插入,
▶  这样一来,堆里面存放的就是数据集合中的前 10 个最大元素,
此时小堆的堆顶元素也就是堆中的第 10 个最大的元素

 

✨思考:为什么找出最大的前10个数,不能建大堆呢?

如果你建的10个元素的大堆,堆顶元素恰好是数据集合中最大的那个,那第2大的数、第3大的数不就能找不到了。

三、完整代码和视图 

以从1w个数里找出最大的前10个数为例:

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>typedef int HPDatatype;
void Swap(HPDatatype* x, HPDatatype* y)
{HPDatatype temp = 0;temp = *x;*x = *y;*y = temp;
}void AdjustDown(HPDatatype* a,int n,int parent)
{// 左孩子int child = parent * 2 + 1;// 防止越界while (child < n){//小堆if (child + 1 < n && a[child] > a[child + 1]){child++;}// 开始向下调整if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}void TopK(HPDatatype* a, int n, int k)
{HPDatatype* kminHeap = (HPDatatype*)malloc(sizeof(HPDatatype) * k);assert(kminHeap);// 1. 建堆----用a中前k个元素建堆for (int i = 0; i < k; i++){kminHeap[i] = a[i];}// 建小堆for (int j = ((n - 1) - 1) / 2; j >= 0; j--){// 从倒数第一个非叶子节点开始AdjustDown(kminHeap, k, j);}// 2. 将剩余n-k个元素依次与堆顶的元素交换,比堆顶大,交换for (int i = k; i < n; i++){if (a[i] > kminHeap[0]){kminHeap[0] = a[i];//如果比堆顶大,就替换AdjustDown(kminHeap, k, 0);//向下调整确保为堆}}for (int j = 0; j < k; j++){printf("%d ", kminHeap[j]);}printf("\n");free(kminHeap);
}int main()
{int n = 10000;int* a = (int*)malloc(sizeof(int) * n);srand(time(0));for (int i = 0; i < n; ++i){a[i] = rand() % 1000000; //产生一个随机数,数值均小于100万}a[5] = 1000000 + 1;a[1231] = 1000000 + 2;a[531] = 1000000 + 3;a[5121] = 1000000 + 4;a[115] = 1000000 + 5;a[2335] = 1000000 + 6;a[9999] = 1000000 + 7;a[76] = 1000000 + 8;a[423] = 1000000 + 9;a[3144] = 1000000 + 10;TopK(a, n, 10);return 0;
}

四、共勉

 以下就是我对数据结构---堆排序的理解,如果有不懂和发现问题的小伙伴,请在评论区说出来哦,同时我还会继续更新对数据结构-------链式二叉树请持续关注我哦!!!!

相关文章:

【数据结构】堆的应用-----TopK问题

目录 一、前言 二、Top-k问题 &#x1f4a6;解法一&#xff1a;暴力排序 &#x1f4a6;解法二&#xff1a;建立N个数的堆 &#x1f4a6;解法三&#xff1a;建立K个数的堆&#xff08;最优解&#xff09; 三、完整代码和视图 四、共勉 一、前言 在之前的文章中&#xff…...

QT之xml文件的读写

QT之xml文件的读写 简介用法举例 简介 QT的QDomDocument、QDomElement、QDomNode是Qt XML模块中的三个类&#xff0c;用于解析和操作XML文档。 1&#xff09;QDomDocument类&#xff1a; QDomDocument类表示整个XML文档。它提供了解析XML文档的方法&#xff0c;如setContent(…...

C语言中的异常处理机制是什么?

C语言中的异常处理机制 C语言是一门强大而灵活的编程语言&#xff0c;它为程序员提供了广泛的控制权和自由度。然而&#xff0c;C语言本身并不提供像其他高级语言一样的内置异常处理机制&#xff0c;如Java中的try-catch或Python中的异常处理。因此&#xff0c;C语言程序员需要…...

Java中的并发编程模型和常用工具类

本文主要介绍了Java中的并发编程模型和常用工具类&#xff0c;首先阐述了并发编程的概念及其重要性&#xff0c;然后详细介绍了线程的基本概念、生命周期和状态转换、同步与互斥、死锁问题以及线程池的使用和实现原理。接着介绍了synchronized关键字和Lock接口的使用、原子变量…...

第10章 MySQL(一)

10.1 谈谈MySQL的架构 难度:★★ 重点:★ 白话解析 要想彻底的理解MySQL,它的架构一定要先弄清楚,当Java程序员通过JDBC或者Mybatis去执行一条SQL的时候,到底经历了什么。下边先看一幅图: 户端:Java程序员通过JDBC或者Mybatis去拿MySQL的驱动程序,实际上就是拿客户端。…...

英飞凌 Tricore 架构中断系统详解

本文以TC3系列MCU为例&#xff0c;先来了解中断源是如何产生的&#xff0c;再看一下CPU是如何处理中断源的。 AURIX TC3XX的中断路由模块 Interrupt Router (IR) 在TC3中&#xff0c;中断既可以被CPU处理&#xff0c;也可以被DMA处理&#xff0c;所以手册中不再把中断称为中断…...

单例模式:饿汉式

单例模式全局仅一个实例&#xff0c;用于获取公共的内容 头文件mglobalinfomgr.h class MGlobalInfoMgr {MGlobalInfoMgr();~MGlobalInfoMgr(); public:static MGlobalInfoMgr* GetInstance(); private:static MGlobalInfoMgr* _instance; }; 源文件mglobalinfomgr.cpp MGl…...

什么是视图

目录 一、什么是视图 二、视图的作用 三、创建视图 四、使用视图 1.使用视图查询员工信息 五、注意事项 六、补充 一、什么是视图 视图是基于查询的虚拟表&#xff0c;是一个逻辑表&#xff0c;本身并不包含数据。同真实的表一样&#xff0c;视图包含一系列带有名称的列…...

C++——list(2)

作者&#xff1a;几冬雪来 时间&#xff1a;2023年9月28日 内容&#xff1a;C——list内容讲解 目录 前言&#xff1a; list的const迭代器&#xff1a; const的iterator&#xff1a; const迭代器&#xff1a; operator->: 拷贝构造&#xff1a; 迭代器接口补充&…...

Django基础讲解-路由控制器和视图(Django-02)

一 路由控制器 参考链接&#xff1a; Django源码阅读&#xff1a;路由&#xff08;二&#xff09; - 知乎 Route路由, 是一种映射关系&#xff01;路由是把客户端请求的 url路径与视图进行绑定 映射的一种关系。 这个/timer通过路由控制器最终匹配到myapp.views中的视图函数 …...

【算法题】2873. 有序三元组中的最大值 I

题目&#xff1a; 给你一个下标从 0 开始的整数数组 nums 。 请你从所有满足 i < j < k 的下标三元组 (i, j, k) 中&#xff0c;找出并返回下标三元组的最大值。如果所有满足条件的三元组的值都是负数&#xff0c;则返回 0 。 下标三元组 (i, j, k) 的值等于 (nums[i]…...

HTML5 跨屏前端框架 Amaze UI

Amaze UI采用国际最前沿的“组件式开发”以及“移动优先”的设计理念&#xff0c;基于其丰富的组件&#xff0c;开发者可通过简单拼装即可快速构建出HTML5网页应用&#xff0c;上线仅半年&#xff0c;Amaze UI就成为了国内最流行的前端框架&#xff0c;目前在Github上收获Star数…...

EXCEL会计记账报表财务软件企业公司做账系统凭证自动生成报表

本系统基于VBA编程设计&#xff0c;具有界面简洁美观&#xff0c;操作方便快捷&#xff0c;功能完备实用的特点&#xff0c;系统分为基本信息、凭证处理、账簿查询、会计报表、固定资产管理、系统管理、凭证数据库七大模块&#xff0c;您只需要录入记账凭证&#xff0c;就可以自…...

Can‘t pickle <class ‘__main__.Test‘>: it‘s not the same object as __main__.Test

目录 原因1 类名重复了 案例1 变量名和类名重复 原因1 类名重复了 检查项目代码&#xff0c;是不是其他地方有同名类。 案例1 变量名和类名重复 转自&#xff1a;python3报错Cant pickle <class __main__.Test>: its not the same object as __main__.Test解决 - 知乎…...

第九章 动态规划 part14 1143. 最长公共子序列 1035. 不相交的线 53. 最大子序和

第五十六天| 第九章 动态规划 part14 1143. 最长公共子序列 1035. 不相交的线 53. 最大子序和 一、1143. 最长公共子序列 题目链接&#xff1a; 题目介绍&#xff1a; 思路&#xff1a; 本题和“最长重复子数组”区别在于**这里不要求是连续的了&#xff0c;但要有相对顺序*…...

腾讯云服务器南京地域详细介绍、测试IP和Ping值测速

腾讯云服务器南京地域怎么样&#xff1f;南京地域很不错&#xff0c;正好处于中间的位置&#xff0c;南方北方用户均可以选择&#xff0c;网络延迟更低速度更快&#xff0c;并且目前南京地域有活动&#xff0c;南京地域可用区可选南京一区、南京二区和南京三区&#xff0c;腾讯…...

理解CSS的层叠性和继承性

CSS的层叠性&#xff08;cascading&#xff09;指的是在同一元素上应用多个样式时&#xff0c;不同样式之间的优先级别以及如何进行组合和冲突解决的规则。具体来说&#xff0c;CSS采用的是“选择器优先级”规则来判断哪个样式优先级更高&#xff0c;如果多个样式的优先级相同&…...

OSI体系结构和TCP/IP体系结构

在第一章&#xff08; 计网第一章 &#xff09;的时候&#xff0c;曾经提到过OSI体系结构和TCP/IP体系结构&#xff0c;并对它们进行了简单的对比。这篇博客在其基础上进行更深层次的理解。 一.OSI体系结构&#xff1a; 通信子网&#xff1a; 计算机网络在逻辑功能上可以分为…...

侯捷 C++ STL标准库和泛型编程 —— 8 适配器

8 适配器 适配器 Adapter 只是一个小变化&#xff0c;比如改个接口&#xff0c;函数名称等等其出现在三个地方&#xff1a;仿函数适配器&#xff0c;迭代器适配器&#xff0c;容器适配器可以使用继承 / 复合的两种方式实现&#xff0c;STL中都用复合 其思想就是将该记的东西记…...

每日一题 416 分割等和子集(01背包)

题目 分割等和子集 给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集&#xff0c;使得两个子集的元素和相等。 示例 1&#xff1a; 输入&#xff1a;nums [1,5,11,5] 输出&#xff1a;true 解释&#xff1a;数组可以分割成 [1, 5, 5] …...

U盘插上就显示让格式化是坏了吗?

U盘以其体积小巧、存储容量大、读写速度快的特点&#xff0c;在各种工作和个人使用场合中得到了广泛应用&#xff0c;因此深得用户好评。然而&#xff0c;在日常使用U盘的过程中&#xff0c;经常会遇到一些问题和挑战。今天&#xff0c;我将为大家详细解释U盘出现要求格式化的现…...

分布式应用程序协调服务 ZooKeeper 详解

目录 1、ZooKeeper简介 2、ZooKeeper的使用场景 3、ZooKeeper设计目的 4、ZooKeeper数据模型 5、ZooKeeper几个重要概念 5.1、ZooKeeper Session 5.2、ZooKeeper Watch 5.3、Consistency Guarantees 6、ZooKeeper的工作原理 6.1、Leader Election 6.2、Leader工作流…...

Anniversary party(树形dp 基础题)

1.题目大意 There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor relation forms a tree rooted at the rector V. E. Tretyakov. In …...

Junit的常用操作

注:本篇文章讲解的是junit5 目录 Juint是什么 Juint需要导入的依赖 Juint常用注解 Junit执行顺序 参数化 断言 测试套件 Juint是什么 Juint 是 Java 的一个单元测试框架. 也是回归测试框架. 使用 Junit 能让我们快速的完成单元测试。 注意&#xff1a;Junit 测试也是程序…...

Elasticsearch安装并使用Postman访问

Elasticsearch&#xff0c;一个强大的开源搜索和分析引擎&#xff0c;已经在全球范围内被广泛应用于各种场景&#xff0c;包括网站搜索、日志分析、实时应用等。由于其强大的功能和灵活性&#xff0c;Elasticsearch 已经成为大数据处理的重要工具。然而&#xff0c;对于许多初次…...

Pytorch深度学习训练模型保存问题,找不到保存路径

执行torch.save(net.state_dict(), save_path_pth)报错&#xff1a; RuntimeError: Parent directory D:\xxxxxxxxxxx\weights does not exist. 将文件路径的中文改成全英文就可以了。 注意&#xff1a;这个代码在torch1.7版本无报错&#xff0c;但是在1.13.1版本报错。在linu…...

数据结构与算法之堆: Leetcode 23. 合并 K 个升序链表 (Typescript版)

合并 K 个升序链表 https://leetcode.cn/problems/merge-k-sorted-lists/ 描述 给你一个链表数组&#xff0c;每个链表都已经按升序排列请你将所有链表合并到一个升序链表中&#xff0c;返回合并后的链表 示例 1 输入&#xff1a;lists [[1,4,5],[1,3,4],[2,6]] 输出&…...

代码随想录算法训练营第五十七天 | 392.判断子序列 115.不同的子序列

1. 判断子序列 392. 判断子序列 - 力扣&#xff08;LeetCode&#xff09; dp[i][j] 表示以下标i-1为结尾的字符串s&#xff0c;和以下标j-1为结尾的字符串t&#xff0c;相同子序列的长度。 class Solution {public boolean isSubsequence(String s, String t) {//dp[i][j] 表示…...

Kafka日志索引详解以及生产常见问题分析与总结

文章目录 1、Kafka的Log日志梳理1.1、Topic下的消息是如何存储的&#xff1f;1.1.1、 log文件追加记录所有消息1.1.2、 index和timeindex加速读取log消息日志。 1.2、文件清理机制1.2.1、如何判断哪些日志文件过期了1.2.2、过期的日志文件如何处理 1.3、Kafka的文件高效读写机制…...

vue中 css scoped原理

Vue中css的逻辑是先放子组件&#xff0c;然后放父组件&#xff0c;所以同样的css类名&#xff0c;子组件会被父组件覆盖 html 如下 子被父覆盖 scoped是通过给组件加hash值&#xff0c;锁定组件。 父子组件均scoped的情况下&#xff0c;子仍会覆盖 还是被覆盖了 如何避免被…...

南京汽车集团网站建设/杭州百度快照优化排名推广

OpenCV提供createTrackbar()函式&#xff0c;可以在視窗上產生滑桿&#xff0c;讓使用者自己調整輸入&#xff0c;接著用這輸入值執行預計的操作&#xff0c;另外有getTrackbarPos()和setTrackbarPos()函式&#xff0c;讓我們對滑桿進行進一步的操作。 OpenCV 產生滑桿 int c…...

郑州小程序开发多少钱/宁波seo营销

C中的::的作用 2018-06-08 13:47:46 一米阳光-ing 阅读数 8036更多 分类专栏&#xff1a; C/C (1)作用域限定符&#xff0c;当在类体中直接定义函数时&#xff0c;不需要在函数名字的前面加上类名&#xff0c;但是在类体外实现函数定义的时候&#xff0c;必须加上类名并且加…...

西部数码备案域名购买/win7优化大师官网

为什么80%的码农都做不了架构师&#xff1f;>>> 解决intellij中sPRing boot工程 无法用mainapplication启动问题 一、spring boot 工程 从svn库导出到 intellij idea中 后用mainApplication中的main函数启动时会出现 Failed to introspect annotated methods on cl…...

wps做网站/市场营销活动策划方案

本段代码实现了java Graphics库的最基本的功能&#xff0c;画一条直线。 import java.awt.Frame; import java.awt.Graphics; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; import java.util.Scanner;class MyFrame extends Frame {int x1, y1, …...

室内设计效果图欧式风格/seo免费自学的网站

输出重定向 > 重定向正确输出2> 重定向错误输出&> 重定向全部 重定向正确输入到file 重定向错误输入到file.err 重定向全部输入到file.all 重定向会覆盖掉原来的内容可以使用输出追加:把>改成>> 管道的应用 "|"管道的作用是将一条命令的…...

怎么做传奇私服广告网站/站长工具麻豆

关于如何集成spring-data-mongodb到项目中&#xff0c;已经有很多人介绍了&#xff0c;这里只给出几个链接。GETTING STARTED Accessing Data with MongoDB&#xff1a; http://spring.io/guides/gs/accessing-data-mongodb/MongoDB初探(二)----使用spring-data配置mongodb &am…...