当前位置: 首页 > news >正文

数学建模Matlab之数据预处理方法

本文综合代码来自文章http://t.csdnimg.cn/P5zOD


异常值与缺失值处理

%% 数据修复
% 判断缺失值和异常值并修复,顺便光滑噪音,渡边笔记
clc,clear;close all;
x = 0:0.06:10;
y = sin(x)+0.2*rand(size(x));
y(22:34) = NaN; % 模拟缺失值
y(89:95) = 50;% 模拟异常值
testdata = [x' y'];subplot(2,2,1);
plot(testdata(:,1),testdata(:,2)); %subplot在一个图窗中创建多个子图,然后使用plot函数将原始数据可视化
title('原始数据');

异常值检验

作者通常首先判断是否具有异常值,因为如果有异常值的话,咱们就会剔除异常值,使其变成缺失值,然后再做缺失值处理会好很多。

%% 判断数据中是否存在异常值
% 1.mean 三倍标准差法 2.median 离群值法 3.quartiles 非正态的离群值法
% 4.grubbs 正态的离群值法 5.gesd 多离群值相互掩盖的离群值法
choice_1 = 5;
yichangzhi_fa = char('mean', 'median', 'quartiles', 'grubbs','gesd');
yi_chang = isoutlier(y,strtrim(yichangzhi_fa(choice_1,:))); %选择的是gesd多离群值……
if sum(yi_chang)disp('数据存在异常值');
elsedisp('数据不存在异常值');
end

对于上面的异常值检验法做讲解与扩展:

1. Mean 三倍标准差法(3σ原则)

  • 描述:在正态分布数据中,任何一个数值如果偏离平均值超过3倍的标准差,就被认为是异常值。
  • 应用条件数据基本呈正态分布。(非常重要,需要进行正态性检验)
  • 场景:适用于各种连续数据的分析,例如金融、生物统计等领域。

2. Median 离群值法

  • 描述:基于中位数和四分位数范围来识别异常值。
  • 应用条件不需要数据完全符合正态分布。
  • 场景:适用于偏态分布或者非正态分布的数据。

3. Quartiles 非正态的离群值法

  • 描述:通过计算数据的四分位数范围(IQR)和上下四分位数来检测异常值。
  • 应用条件:适用于非正态分布的数据
  • 场景:在各种非正态分布的数据分析中都可以使用。

4. Grubbs 正态的离群值法

  • 描述:基于正态分布假设,测试数据集中最大或最小值是否显著偏离其余的观测值。
  • 应用条件:数据应该是正态分布。
  • 场景:广泛应用于各种领域,尤其是实验数据分析

5. GESD(Generalized Extreme Studentized Deviate)

  • 描述:用于检测多个异常值,即使它们相互掩盖
  • 应用条件:不特定于某一分布。
  • 场景:当异常值可能相互掩盖时使用,例如在时间序列分析中。

其他方法

  • Tukey’s Fences

    • 通过四分位数范围(IQR)和“fences”(上下界)识别异常值。
    • 适用于各种分布的数据。
  • DBSCAN(Density-Based Spatial Clustering of Applications with Noise):

    • 一种基于密度的聚类算法,能够识别簇内和簇外点。
    • 用于大数据集和空间数据。
  • Isolation Forests

    • 用于高维数据集的异常检测。
    • 通过随机分离点来检测异常值。

正态性检验

读者不难发现,异常值检验通常与数据是否符合正态分布有关,所以,我们一起讨论一下如何使用matlab进行正态性检验。

初步判断

利用图像进行初步的正态性判断,涉及到常见的两种图:Q-Q图和P-P图。

  1. PP图

    • PP图是用于比较两个数据集的累积分布函数(CDF)。
    • 当你有一个样本数据集和一个理论分布(如正态分布)时,PP图会比较样本数据的CDF和理论CDF。
    • 在正态PP图中,如果样本数据来自正态分布,那么数据点应该大致沿着45度线。
  2. QQ图

    • QQ图是用于比较两个数据集的分位数。QQ图更常用于正态性检验,因为它对尾部的差异更敏感。
    • 当你有一个样本数据集和一个理论分布时,QQ图会比较样本数据的分位数和理论分布的分位数。
    • 在正态QQ图中,如果样本数据来自正态分布,那么数据点应该大致沿着一条直线,这条线不一定是45度线,但是应该是线性的。

其实上面最重要的一点就是,数据点在两个图中都沿着标准正态分布直线近似分布的话,我们就可以初步判断数据具有正态分布性。

% 正态检验
% 生成一些随机数据
data = randn(100, 1);% 创建一个新的图形窗口
figure;% 使用 normplot 创建正态概率图 (QQ图)
subplot(1,2,1);
normplot(data);
title('Normal Q-Q Plot');% 使用 probplot 创建PP图
subplot(1,2,2);
probplot('normal', data);
title('Normal P-P Plot');

可以在论文中这样写:

为了对数据集的分布特性进行深入理解和分析,本文采用了QQ图和PP图两种方法进行了初步的正态性检验,旨在从不同角度全面评估数据的分布状态。其结果如图1所示。

图1 xx数据PP图(左)和QQ图(右)

图1结果显示:在QQ图中,xx数据的尾部行为和中心趋势没有发现显著的异常值或者偏态现象,表现出良好的正态分布特征;在PP图中,xx数据的整体分布与正态分布非常接近,进一步证实了数据的正态性。综合以上分析结果可初步得知:xx数据集呈现出较强的正态分布特性。

尽管PP图和QQ图都是强大的工具,但它们主要用于探索性数据分析,并不能代替更正式的正态性检验方法,如Jarque-Bera测试或Lilliefors测试。

正式判断

% 正态检验
% 生成一些随机数据
data = randn(100, 1);% 使用 jbtest 进行 Jarque-Bera 测试
[h_jb, p_jb] = jbtest(data);% 使用 lillietest 进行 Lilliefors 测试
[h_lil, p_lil] = lillietest(data);% 显示测试结果
fprintf('Jarque-Bera Test: h = %d, p = %f\n', h_jb, p_jb);
fprintf('Lilliefors Test: h = %d, p = %f\n', h_lil, p_lil);

在上述代码中,hp 分别代表假设检验的结果和 p 值,可以用来判断数据是否符合正态分布。

  • h = 0 表示在给定的显著性水平下,不拒绝数据来自正态分布的原假设。即,数据可以被认为是正态分布的。
  • p 值是一个概率值,它表示观察到的数据与正态分布之间的差异是偶然产生的概率。一般来说,如果 p 值大于预定的显著性水平(例如,0.05),则接受原假设,认为数据是正态分布的。

故对上图结果进行数据分析(论文中写的多一点啊,这是简要版):

  1. Jarque-Bera 测试结果:

    • h = 0, p = 0.361618
    • 因为h为0,并且p值为0.361618(大于通常的显著性水平0.05),所以我们接受原假设,认为数据是正态分布的。
  2. Lilliefors 测试结果:

    • h = 0, p = 0.500000
    • 同样,h为0,并且p值为0.5,这也指示数据是正态分布的。

异常值处理与缺失值判断

作者所有异常值处理都是先赋空值,不知道还有没有其他的方法……

%% 对异常值赋空值
F = find(yi_chang == 1);
y(F) = NaN; % 令数据点缺失
testdata = [x' y'];

然后就可以和缺失值一起处理了,但是,为了保证文章的严谨性,咱还是需要判断一下是否存在缺失值。并且,不仅仅只判断,如果题目数据特征尤其多,并且有的特征缺失样本太多了,咱建议还是把这些特征删了,这就涉及到最省力法则

% 假设testdata是一个n行m列的矩阵,每一列代表一个特征
[n, m] = size(testdata);
threshold = 0.8 * n;  % 设置阈值,80%的总样本量% 遍历每一个特征
for i = 1:m% 计算每一列(特征)中非缺失值的数量nonMissingCount = sum(~isnan(testdata(:, i)));% 如果非缺失值的数量少于阈值,则删除该列(特征)if nonMissingCount < thresholdtestdata(:, i) = [];  % 删除特征m = m - 1;  % 更新特征数量i = i - 1;  % 更新当前索引end
end% 显示处理后的数据
disp('处理后的数据:');
disp(testdata);

填充缺失值

%% 对数据进行补全
% 数据补全方法选择
% 1.线性插值 linear 2.分段三次样条插值 spline 3.保形分段三次样条插值 pchip
% 4.移动滑窗插补 movmean
chazhi_fa = char('linear', 'spline', 'pchip', 'movmean');
choice_2 = 3;
if choice_2 ~= 4testdata_1 = fillmissing(testdata,strtrim(chazhi_fa(choice_2,:))); % strtrim 是为了去除字符串组的空格
elsetestdata_1 = fillmissing(testdata,'movmean',10); % 窗口长度为 10 的移动均值
endsubplot(2,2,3);
plot(testdata_1(:,1),testdata_1(:,2));
title('数据补全结果');

作者通常喜欢(让队友)使用K最近邻法填补,而且都是用python搞的,so这里不讲。


平滑处理

当然,可以根据实际情况进行数据的平滑处理:

%% 进行数据平滑处理
% 滤波器选择 1.Savitzky-golay 2.rlowess 3.rloess
choice_3 = 2;
lvboqi = char('Savitzky-golay', 'rlowess', 'pchip', 'rloess');
% 通过求 n 元素移动窗口的中位数,来对数据进行平滑处理
windows = 8;
testdata_2 = smoothdata(testdata_1(:,2),strtrim(lvboqi(choice_3,:)),windows) ;

那么,实际情况到底是什么?

平滑数据对于某些机器学习模型的训练和性能是有益的,尤其是对于那些对数据中的噪声敏感的模型。下面是一些可能受益于数据平滑的算法:

决定是否进行数据平滑应该基于对上述因素的综合考虑,而不仅仅是基于特征的数量。在决定平滑之前,最好通过交叉验证来评估平滑对模型性能的实际影响。属于锦上添花的作用。


总结

最终的代码综合一下:

% 判断缺失值和异常值并修复,顺便光滑噪音,渡边笔记
clc,clear;close all;
x = 0:0.06:10;
y = sin(x)+0.2*rand(size(x));
y(22:34) = NaN; % 模拟缺失值
y(89:95) = 50;% 模拟异常值
testdata = [x' y'];subplot(2,2,1);
plot(testdata(:,1),testdata(:,2)); %subplot在一个图窗中创建多个子图,然后使用plot函数将原始数据可视化
title('原始数据');%% 判断数据中是否存在缺失值,并使用最省力法则
% 假设testdata是一个n行m列的矩阵,每一列代表一个特征
[n, m] = size(testdata);
threshold = 0.8 * n;  % 设置阈值,80%的总样本量% 遍历每一个特征
for i = 1:m% 计算每一列(特征)中非缺失值的数量nonMissingCount = sum(~isnan(testdata(:, i)));% 如果非缺失值的数量少于阈值,则删除该列(特征)if nonMissingCount < thresholdtestdata(:, i) = [];  % 删除特征m = m - 1;  % 更新特征数量i = i - 1;  % 更新当前索引end
end% 显示处理后的数据
disp('处理后的数据:');
disp(testdata);%% 判断数据中是否存在异常值
% 1.mean 三倍标准差法 2.median 离群值法 3.quartiles 非正态的离群值法
% 4.grubbs 正态的离群值法 5.gesd 多离群值相互掩盖的离群值法
choice_1 = 5;
yichangzhi_fa = char('mean', 'median', 'quartiles', 'grubbs','gesd');
yi_chang = isoutlier(y,strtrim(yichangzhi_fa(choice_1,:))); %选择的是gesd多离群值……
if sum(yi_chang)disp('数据存在异常值');
elsedisp('数据不存在异常值');
end%% 对异常值赋空值
F = find(yi_chang == 1);
y(F) = NaN; % 令数据点缺失
testdata = [x' y'];subplot(2,2,2);
plot(testdata(:,1),testdata(:,2));
title('去除差异值');%% 对数据进行补全
% 数据补全方法选择
% 1.线性插值 linear 2.分段三次样条插值 spline 3.保形分段三次样条插值 pchip
% 4.移动滑窗插补 movmean
chazhi_fa = char('linear', 'spline', 'pchip', 'movmean');
choice_2 = 3;
if choice_2 ~= 4testdata_1 = fillmissing(testdata,strtrim(chazhi_fa(choice_2,:))); % strtrim 是为了去除字符串组的空格
elsetestdata_1 = fillmissing(testdata,'movmean',10); % 窗口长度为 10 的移动均值
endsubplot(2,2,3);
plot(testdata_1(:,1),testdata_1(:,2));
title('数据补全结果');%% 进行数据平滑处理
% 滤波器选择 1.Savitzky-golay 2.rlowess 3.rloess
choice_3 = 2;
lvboqi = char('Savitzky-golay', 'rlowess', 'pchip', 'rloess');
% 通过求 n 元素移动窗口的中位数,来对数据进行平滑处理
windows = 8;
testdata_2 = smoothdata(testdata_1(:,2),strtrim(lvboqi(choice_3,:)),windows) ;subplot(2,2,4);
plot(x,testdata_2)
title('数据平滑结果');

至此,数据预处理完成。

相关文章:

数学建模Matlab之数据预处理方法

本文综合代码来自文章http://t.csdnimg.cn/P5zOD 异常值与缺失值处理 %% 数据修复 % 判断缺失值和异常值并修复&#xff0c;顺便光滑噪音&#xff0c;渡边笔记 clc,clear;close all; x 0:0.06:10; y sin(x)0.2*rand(size(x)); y(22:34) NaN; % 模拟缺失值 y(89:95) 50;% 模…...

如何保证Redis的HA高可用

目录 1.关于Redis2.Redis 的使用场景3.Redis的高可用3.1 哨兵模式&#xff08;Sentinel&#xff09;3.2 集群模式&#xff08;Cluster&#xff09; 4.参考 本文主要介绍Redis如何保证高可用。 1.关于Redis Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的…...

第一百六十三回 如何在任意位置显示PopupMenu

文章目录 概念介绍使用方法示例代码 我们在上一章回中介绍了PopupMenuButton相关的内容&#xff0c;本章回中将介绍如何在任意位置显示PopupMenu.闲话休提&#xff0c;让我们一起Talk Flutter吧。 概念介绍 我们在上一章回中介绍了PopupMenuButton相关的内容&#xff0c;它主…...

采用python中的opencv2的库来运用机器视觉移动物体

一. 此次我们来利用opencv2来进行机器视觉的学习 1. 首先我们先来进行一个小的案例的实现. 这次我们是将会进行一个小的矩形手势的移动. import cv2 from cvzone.HandTrackingModule import HandDetectorcap cv2.VideoCapture(0) # cap.set(3, 1280) # cap.set(4, 720) col…...

一、thymeleaf简介

1.1 什么是thymeleaf Thymeleaf是一个适用于web和独立环境的现代服务器端Java模板引擎&#xff0c;能够处理HTML、XML、JavaScript、CSS甚至纯文本。主要目标是提供一种优雅且高度可维护的创建模板的方法。 何为模板引擎呢&#xff1f;模板引擎就是为了使用户页面和业务数据…...

二分查找模版

对于一个递增序列我们要找大于等于target的数&#xff0c;返回结果的下标时 比如 序列 5 7 7 8 8 10 初始化左右指针l0 rn-1 猜测区间 [l,r] 闭区间&#xff0c;mid(lr)/2 防溢出就写成 midl(r-l)/2 如果有nums[mid]<target 那么[l,mid]这个区间的数就都小于target 更新 lmi…...

idea清空缓存类

解决办法 网上有很多是让你去清空什么maven依赖&#xff0c;但假如这个项目是你不可以大刀阔斧的话 可以清空idea缓存 选择 Invalidate 开头的 然后全选 运行重启idea OK...

PAT(Basic Level) Practice(中文) 1015德才论

前言 ※ PTA是 程序设计类实验辅助教学平台 &#xff0c;里边包含一些编程题目集以供练习。 这道题用java解&#xff0c;我试了三种解法&#xff0c;不断优化&#xff0c;但始终是三个测试点通过、三个测试点超时。我把我的代码放在这里&#xff0c;做个参考吧。 1015 德才…...

接口自动化测试的概述及流程梳理~

接下来开始学习接口自动化测试。 因为之前从来没接触过&#xff0c;所以先了解一些基础知识。 1.接口测试的概述 2.接口自动化测试流程。 接口测试概述 接口&#xff0c;又叫API&#xff08;Application Programming Interface&#xff0c;应用程序编程接口&#xff09;&a…...

竞赛 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 -python

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.2 打哈欠检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#x…...

虚拟货币(也称为加密货币或数字货币)的运作

虚拟币发展史 虚拟币的发展史可以追溯到20世纪末和21世纪初&#xff0c;以下是虚拟币的重要发展节点&#xff1a; 1998年&#xff1a;比特币白皮书的发布 比特币的概念最早由中本聪&#xff08;Satoshi Nakamoto&#xff09;在1998年提出&#xff0c;随后在2008年发布了一份名…...

N. Number Reduction

Problem - 1765N - Codeforces 发现如果是无前导0最小数那么在保证删除k个数时第1位是最小的&#xff0c;第二位一定是相对最小的&#xff0c;且答案第一位和第二位在原位置的间隔是小于等于还可以删除的位数的。 因此&#xff0c;对于原数字长度位n&#xff0c;要删除k&#…...

Java集合面试题

一、Java集合面试题 1.LinkedHashMap底层原理&#xff1f; HashMap是无序的&#xff0c;迭代HashMap所得到元素的顺序并不是它们最初放到HashMap的顺序&#xff0c;即不能保持它们的插入顺序。 LinkedHashMap继承于HashMap&#xff0c;是HashMap和LinkedList的融合体&#x…...

Python 编程基础 | 第三章-数据类型 | 3.5、列表

一、列表 1、创建列表 序列是Python中最基本的数据结构&#xff0c;Python有6个序列的内置类型&#xff0c;但最常见的是列表和元组。序列都可以进行的操作包括索引&#xff0c;切片&#xff0c;加&#xff0c;乘&#xff0c;检查成员。此外&#xff0c;Python已经内置确定序列…...

Spring Cloud Zuul 基本原理

Spring Cloud Zuul 底层是基于Servlet实现的&#xff0c;核心是通过一系列的ZuulFilter来完成请求的转发。 1、核心组件注册 1.1. EnableZuulProxy注解 启用Zuul作为微服务网关&#xff0c;需要在Application应用类加上EnableZuulProxy注解&#xff0c;而该注解核心是利用Im…...

QT实现TCP服务器客户端的实现

ser&#xff1a; widget.cpp&#xff1a; #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//实例化一个服务器server new QTcpServer(this);// 此时&#xf…...

行为型设计模式——责任链模式

摘要 责任链模式(Chain of responsibility pattern): 通过责任链模式, 你可以为某个请求创建一个对象链. 每个对象依序检查此请求并对其进行处理或者将它传给链中的下一个对象。 一、责任链模式意图 职责链模式&#xff08;Chain Of Responsibility&#xff09; 是一种行为设…...

window安装压缩版postgresql

环境&#xff1a; window 11 专业版postgresql-16.0-1-windows-x64-binaries.zip 一、下载 1.1 从官网下载 https://www.postgresql.org/download/windows/ 1.2 从百度网盘下载 链接&#xff1a;https://pan.baidu.com/s/1fmQbgWSzX4hN07Lgdzfz0g?pwddzyy 提取码&#…...

数组(数据结构)

优质博文&#xff1a;IT-BLOG-CN 一、简介 数组Array是一种线性表数据结构&#xff0c;它用一组连续的内存空间&#xff0c;存储一组具有相同类型的数据。 数组因具有连续的内存空间的特点&#xff0c;数据拥有非常高效率的“随机访问”&#xff0c;时间复杂度为O(1)。但因要保…...

C/C++ 二分查找面试算法题

1.二分查找&#xff08;有序数组&#xff09; https://blog.csdn.net/qq_63918780/article/details/122527681 1 #include <stdio.h>2 #include <string.h>3 4 int func(int *a,int j,int x)5 {6 int len j - 1,i 0,min;7 while(i<len)8 {9 …...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...