当前位置: 首页 > news >正文

OpenCV读取图像时按照BGR的顺序HWC排列,PyTorch按照RGB的顺序CHW排列

OpenCV读取RGB图像

在OpenCV中,读取的图片默认是HWC格式,即按照高度、宽度和通道数的顺序排列图像尺寸的格式。我们看最后一个维度是C,因此最小颗粒度是C。

例如,一张形状为256×256×3的RGB图像,在OpenCV中读取后的格式为[256, 256, 3],其中最后一个维度表示图像的通道数。在OpenCV中,可以通过cv2.imread()函数读取图片,该函数的返回值是一个NumPy数组,表示读取的图像像素值。

需要注意的是,OpenCV读取的图像像素值是按照BGR顺序排列的,而不是RGB顺序。因此,如果需要将OpenCV读取的图像转换为RGB顺序,可以使用cv2.cvtColor()函数进行转换。

OpenCV读取一张RGB图像时,它会将像素数据按照BGR的顺序排列,对于一张3×3的RGB图像,其像素信息在内存中的排列方式如下所示:

[
[[B G R] [B G R] [B G R]],
[[B G R] [B G R] [B G R]],
[[B G R] [B G R] [B G R]], ]

可知,每一个像素点都由三个值组成,分别表示该像素点在蓝色、绿色和红色通道中的颜色值,而整张图像的像素数据则按照BGR的顺序排列。

在PyTorch中读取RGB图像

PyTorch接收的RGB图像通常采用CHW格式。在PyTorch中,RGB图像的像素值通常采用浮点数的形式表示,并且像素值的范围通常是[0, 1]或[-1, 1]。

一般pytorch中的tensor,即网络的输入,要转换为plane的格式,即rrrgggbbb。

[
[[R R R] [R R R] [R R R]],
[[G G G] [G G G] [G G G]],
[[B B B] [B B B] [B B B]], ]

在PyTorch中,模型接收的RGB图像通常采用CHW格式,即按照通道数、高度和宽度的顺序排列像素信息的方式。

具体来说,假设某个像素点的坐标为(i, j),其在内存中的存储位置可以表示为:

offset = i * W * C + j * C

其中,i表示该像素点在第二维中的位置,j表示该像素点在第三维中的位置,C表示通道数,W表示宽度。这个公式可以计算出该像素点在内存中的偏移量,从而可以访问该像素点的RGB值。

实验

1 生成一张图片

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt# 用随机数模拟一张图像
image = np.random.randint(256, size=60)
image = image.reshape((5,4,3))
image_hwc = np.uint8(image)# 展示图像
image_show = Image.fromarray(image_hwc)
plt.imshow(image_show)
plt.show()# 打印图像像素值,[h, w, c]格式
print(image_hwc)# 打印像素值,[c, h, w]格式
image_chw = np.transpose(image_hwc, (2,0,1))
print(image_chw)

以上代码模拟生成的图像如下图所示,图中有5行4列总共20个像素。
在这里插入图片描述

上图的所有像素及其像素值如下图所示,[h, w, c]格式。可以看出,最里层的括号内为单个像素在三个通道上的像素值。

我们看这种维度的一个方法是:看最后一个维度的含义,[h,w,c]最后一个维度是3,因此意味着最小的颗粒度维度是3。

在这里插入图片描述
如果以[c, h, w]格式表示的话,应该是下图这样的:
看最后一个维度的含义,[c,h,w]最后一个维度是w(我们实验中是4),因此意味着最小的颗粒度维度是4。

我们想象,一束光通过三棱镜后分解为彩色光,我们取出其中一个频段的数据,把这个频段的数据进行二维排列,就是该通道的情况。

在这里插入图片描述

2 CHW和HWC的本质

本质是一个规范,排列多维度的数据的规范,换句话说,就是定义了一个数据类型的结构体。

转换过程

  1. 其实数据可以看做是一堆无序的数据,轴的存在让这些数据按照一定层级及次序排布
  2. 转换前的数据是这样排布的,先按照图像高分成3堆,对这3堆的每一堆按照图像图像宽分2堆,分好的2堆分别按照通道数分成3堆
  3. 转换后的数据排布顺序变了,它先按照通道数分成3堆,分好的3堆各自按照图像高分成3堆,再按照图像宽分成2堆。

在这里插入图片描述

参考

https://blog.csdn.net/hh1357102/article/details/130622666
https://zhuanlan.zhihu.com/p/476310426

相关文章:

OpenCV读取图像时按照BGR的顺序HWC排列,PyTorch按照RGB的顺序CHW排列

OpenCV读取RGB图像 在OpenCV中,读取的图片默认是HWC格式,即按照高度、宽度和通道数的顺序排列图像尺寸的格式。我们看最后一个维度是C,因此最小颗粒度是C。 例如,一张形状为2562563的RGB图像,在OpenCV中读取后的格式…...

基于安卓android微信小程序的校园维修平台

项目介绍 随着社会的发展,社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景,运用软件工程原理和开发方法,它主要是采用java语言技术和mysql数据库来完成对系统的设计。整…...

mysql面试题16:说说分库与分表的设计?常用的分库分表中间件有哪些?分库分表可能遇到的问题有哪些?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:说说分库与分表的设计? 在MySQL中,分库与分表是常用的数据库水平扩展技术,可以提高数据库的吞吐量和扩展性。下面将具体讲解MySQL中分库与分表…...

AlexNet网络复现

1. 引言 在现代计算机视觉领域,深度学习已经成为了一个核心技术,其影响力远超过了传统的图像处理方法。但深度学习,特别是卷积神经网络(CNN)在计算机视觉的主导地位并不是从一开始就有的。在2012年之前,计…...

pytorch模型量化和移植安卓详细教程

十一下雨,在家撸模型,希望对pytorch模型进行轻量化,间断摸索了几天,效果不错,做个总结分享出来。 量化是一种常见的技术,人们使用它来使模型在推断时运行更快,具有更低的内存占用和更低的功耗,而无需更改模型架构。在这篇博客文章中,我们将简要介绍量化是什么以及如何…...

C++(List)

本节目标: 1.list介绍及使用 2.list深度剖析及模拟实现 3.list和vector对比 1.list介绍及使用 1.1list介绍 1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。 2. list的底层是双向链表结构,…...

分布式架构篇

1、微服务 微服务架构风格,就像是把一个单独的应用程序开发为一套小服务,每个服务运行在自己的进程中,并使用轻量级机制通信,通常是 HTTP API。这些服务围绕业务能力来构建,并通过完全自动化部署机制来独立部署。这些…...

ros编译报错-- Could NOT find ros_ethercat_eml (missing: ros_ethercat_eml_DIR)

– Could NOT find ros_ethercat_eml (missing: ros_ethercat_eml_DIR) – Could not find the required component ‘ros_ethercat_eml’. The following CMake error indicates that you either need to install the package with the same name or change your environment …...

VD6283TX环境光传感器驱动开发(3)----测试闪烁频率代码

VD6283TX环境光传感器驱动开发----3.测试闪烁频率代码 概述视频教学样品申请源码下载参考代码开发板设置测试结果 概述 ST提供了6283A1_AnalogFlicker代码在X-NUCLEO-6283A1获取闪烁频率,同时移植到VD6283TX-SATEL。 闪烁频率提取主要用于检测光源的闪烁频率&#…...

透明度和透明贴图制作玻璃水杯

1、什么是透明度 模型透明度是指一个物体或模型在呈现时的透明程度。它决定了物体在渲染时,是否显示其后面的物体或背景。 在图形渲染中,透明度通常以0到1之间的值表示。值为0表示完全透明,即物体不可见,背景或其他物体完全穿透…...

【前后缀技巧】2022牛客多校3 A

登录—专业IT笔试面试备考平台_牛客网 题意: 思路: 这种是典中典中典,对于gcd,背包问题都是一样的处理方式 预处理出前缀lca和后缀lca,枚举哪个消失即可,可以统计方案数 Code: #include &l…...

Ae 效果:CC Page Turn

扭曲/CC Page Turn Distort/CC Page Turn CC Page Turn (CC 翻页)主要用于模拟书页翻动的效果。通过使用该效果,用户可以创建出像书页或杂志页面翻动的视觉效果,增强影片的交互性和视觉吸引力。 ◆ ◆ ◆ 效果属性说明 Contro…...

【数据仓库设计基础(四)】数据仓库实施步骤

文章目录 1.定义范围2.确定需求3.逻辑设计1)建立需要的数据列表2)识别数据源3)制作实体关系图 4.物理设计1)性能优化2)数仓的拓展性 5.装载数据6.…...

GridSearchCV 工具介绍

目录 1、定义 2、工作流程 3、示例代码 4、总结 1、定义 GridSearchCV 是一个用于超参数调优的工具,它在给定的参数网格中执行交叉验证,以确定最佳的参数组合。通过穷举搜索(exhaustive search)来寻找最佳参数,即…...

基于 SSM 框架的旅游文化管理平台

本系统采用基于JAVA语言实现、架构模式选择B/S架构,Tomcat7.0及以上作为运行服务器支持,基于JAVA等主要技术和框架设计,idea作为开发环境,数据库采用MYSQL5.7以上。 开发环境: JDK版本:JDK1.8 服务器&…...

chatgpt技术总结(包括transformer,注意力机制,迁移学习,Ray,TensorFlow,Pytorch)

最近研读了一些技术大咖对chatgpt的技术研讨,结合自己的一些浅见,进行些许探讨。 我们惊讶的发现,chatgpt所使用的技术并没有惊天地泣鬼神的创新,它只是将过去的技术潜能结合现在的硬件最大化的发挥出来,也正因如此&am…...

vertx的学习总结4

一、异步数据和事件流 1.为什么流是事件之上的一个有用的抽象? 2.什么是背压,为什么它是异步生产者和消费者的基础? 3.如何从流解析协议数据? 1. 答:因为它能够将连续的事件序列化并按照顺序进行处理。通过将事件…...

SpringBoot心旅售票管理系统

本心旅售票管理系统采用基于JAVA语言实现、架构模式选择B/S架构,Tomcat7.0及以上作为运行服务器支持,基于JAVA、springboot、vue等主要技术和框架设计,idea作为开发环境,数据库采用MYSQL5.7以上。 采用技术: SpringBootVueMySQL...

CUDA C编程权威指南:1-基于CUDA的异构并行计算

什么是CUDA?CUDA(Compute Unified Device Architecture,统一计算设备架构)是NVIDIA(英伟达)提出的并行计算架构,结合了CPU和GPU的优点,主要用来处理密集型及并行计算。什么是异构计算&#xff1…...

R语言易错点(持续更新中~~)

1.R向量元素的索引(下标)是从1开始的&#xff0c;而非0 >x [1] 1 2 4>x[3] [1] 4 2.[]和[ [ ] ] mylist<-list(stud.id1234,stud.name"Tom",stud.marksc(10,3,14,25,19)) > mylist $stud.id [1] 1234$stud.name [1] "Tom"$stud.marks [1] 10…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...