OpenCV读取图像时按照BGR的顺序HWC排列,PyTorch按照RGB的顺序CHW排列
OpenCV读取RGB图像
在OpenCV中,读取的图片默认是HWC格式,即按照高度、宽度和通道数的顺序排列图像尺寸的格式。我们看最后一个维度是C,因此最小颗粒度是C。
例如,一张形状为256×256×3的RGB图像,在OpenCV中读取后的格式为[256, 256, 3],其中最后一个维度表示图像的通道数。在OpenCV中,可以通过cv2.imread()函数读取图片,该函数的返回值是一个NumPy数组,表示读取的图像像素值。
需要注意的是,OpenCV读取的图像像素值是按照BGR顺序排列的,而不是RGB顺序。因此,如果需要将OpenCV读取的图像转换为RGB顺序,可以使用cv2.cvtColor()函数进行转换。
OpenCV读取一张RGB图像时,它会将像素数据按照BGR的顺序排列,对于一张3×3的RGB图像,其像素信息在内存中的排列方式如下所示:
[
[[B G R] [B G R] [B G R]],
[[B G R] [B G R] [B G R]],
[[B G R] [B G R] [B G R]], ]
可知,每一个像素点都由三个值组成,分别表示该像素点在蓝色、绿色和红色通道中的颜色值,而整张图像的像素数据则按照BGR
的顺序排列。
在PyTorch中读取RGB图像
PyTorch接收的RGB图像通常采用CHW格式。在PyTorch中,RGB图像的像素值通常采用浮点数的形式表示,并且像素值的范围通常是[0, 1]或[-1, 1]。
一般pytorch中的tensor,即网络的输入,要转换为plane的格式,即rrrgggbbb。
[
[[R R R] [R R R] [R R R]],
[[G G G] [G G G] [G G G]],
[[B B B] [B B B] [B B B]], ]
在PyTorch中,模型接收的RGB图像通常采用CHW格式,即按照通道数、高度和宽度的顺序排列像素信息的方式。
具体来说,假设某个像素点的坐标为(i, j),其在内存中的存储位置可以表示为:
offset = i * W * C + j * C
其中,i表示该像素点在第二维中的位置,j表示该像素点在第三维中的位置,C表示通道数,W表示宽度。这个公式可以计算出该像素点在内存中的偏移量,从而可以访问该像素点的RGB值。
实验
1 生成一张图片
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt# 用随机数模拟一张图像
image = np.random.randint(256, size=60)
image = image.reshape((5,4,3))
image_hwc = np.uint8(image)# 展示图像
image_show = Image.fromarray(image_hwc)
plt.imshow(image_show)
plt.show()# 打印图像像素值,[h, w, c]格式
print(image_hwc)# 打印像素值,[c, h, w]格式
image_chw = np.transpose(image_hwc, (2,0,1))
print(image_chw)
以上代码模拟生成的图像如下图所示,图中有5行4列总共20个像素。
上图的所有像素及其像素值如下图所示,[h, w, c]格式。可以看出,最里层的括号内为单个像素在三个通道上的像素值。
我们看这种维度的一个方法是:看最后一个维度的含义,[h,w,c]最后一个维度是3,因此意味着最小的颗粒度维度是3。
如果以[c, h, w]格式表示的话,应该是下图这样的:
看最后一个维度的含义,[c,h,w]最后一个维度是w(我们实验中是4),因此意味着最小的颗粒度维度是4。
我们想象,一束光通过三棱镜后分解为彩色光,我们取出其中一个频段的数据,把这个频段的数据进行二维排列,就是该通道的情况。
2 CHW和HWC的本质
本质是一个规范,排列多维度的数据的规范,换句话说,就是定义了一个数据类型的结构体。
转换过程
- 其实数据可以看做是一堆无序的数据,轴的存在让这些数据按照一定层级及次序排布
- 转换前的数据是这样排布的,先按照图像高分成3堆,对这3堆的每一堆按照图像图像宽分2堆,分好的2堆分别按照通道数分成3堆
- 转换后的数据排布顺序变了,它先按照通道数分成3堆,分好的3堆各自按照图像高分成3堆,再按照图像宽分成2堆。
参考
https://blog.csdn.net/hh1357102/article/details/130622666
https://zhuanlan.zhihu.com/p/476310426
相关文章:
OpenCV读取图像时按照BGR的顺序HWC排列,PyTorch按照RGB的顺序CHW排列
OpenCV读取RGB图像 在OpenCV中,读取的图片默认是HWC格式,即按照高度、宽度和通道数的顺序排列图像尺寸的格式。我们看最后一个维度是C,因此最小颗粒度是C。 例如,一张形状为2562563的RGB图像,在OpenCV中读取后的格式…...
基于安卓android微信小程序的校园维修平台
项目介绍 随着社会的发展,社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景,运用软件工程原理和开发方法,它主要是采用java语言技术和mysql数据库来完成对系统的设计。整…...
mysql面试题16:说说分库与分表的设计?常用的分库分表中间件有哪些?分库分表可能遇到的问题有哪些?
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:说说分库与分表的设计? 在MySQL中,分库与分表是常用的数据库水平扩展技术,可以提高数据库的吞吐量和扩展性。下面将具体讲解MySQL中分库与分表…...
AlexNet网络复现
1. 引言 在现代计算机视觉领域,深度学习已经成为了一个核心技术,其影响力远超过了传统的图像处理方法。但深度学习,特别是卷积神经网络(CNN)在计算机视觉的主导地位并不是从一开始就有的。在2012年之前,计…...
pytorch模型量化和移植安卓详细教程
十一下雨,在家撸模型,希望对pytorch模型进行轻量化,间断摸索了几天,效果不错,做个总结分享出来。 量化是一种常见的技术,人们使用它来使模型在推断时运行更快,具有更低的内存占用和更低的功耗,而无需更改模型架构。在这篇博客文章中,我们将简要介绍量化是什么以及如何…...
C++(List)
本节目标: 1.list介绍及使用 2.list深度剖析及模拟实现 3.list和vector对比 1.list介绍及使用 1.1list介绍 1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。 2. list的底层是双向链表结构,…...
分布式架构篇
1、微服务 微服务架构风格,就像是把一个单独的应用程序开发为一套小服务,每个服务运行在自己的进程中,并使用轻量级机制通信,通常是 HTTP API。这些服务围绕业务能力来构建,并通过完全自动化部署机制来独立部署。这些…...
ros编译报错-- Could NOT find ros_ethercat_eml (missing: ros_ethercat_eml_DIR)
– Could NOT find ros_ethercat_eml (missing: ros_ethercat_eml_DIR) – Could not find the required component ‘ros_ethercat_eml’. The following CMake error indicates that you either need to install the package with the same name or change your environment …...
VD6283TX环境光传感器驱动开发(3)----测试闪烁频率代码
VD6283TX环境光传感器驱动开发----3.测试闪烁频率代码 概述视频教学样品申请源码下载参考代码开发板设置测试结果 概述 ST提供了6283A1_AnalogFlicker代码在X-NUCLEO-6283A1获取闪烁频率,同时移植到VD6283TX-SATEL。 闪烁频率提取主要用于检测光源的闪烁频率&#…...
透明度和透明贴图制作玻璃水杯
1、什么是透明度 模型透明度是指一个物体或模型在呈现时的透明程度。它决定了物体在渲染时,是否显示其后面的物体或背景。 在图形渲染中,透明度通常以0到1之间的值表示。值为0表示完全透明,即物体不可见,背景或其他物体完全穿透…...
【前后缀技巧】2022牛客多校3 A
登录—专业IT笔试面试备考平台_牛客网 题意: 思路: 这种是典中典中典,对于gcd,背包问题都是一样的处理方式 预处理出前缀lca和后缀lca,枚举哪个消失即可,可以统计方案数 Code: #include &l…...
Ae 效果:CC Page Turn
扭曲/CC Page Turn Distort/CC Page Turn CC Page Turn (CC 翻页)主要用于模拟书页翻动的效果。通过使用该效果,用户可以创建出像书页或杂志页面翻动的视觉效果,增强影片的交互性和视觉吸引力。 ◆ ◆ ◆ 效果属性说明 Contro…...
【数据仓库设计基础(四)】数据仓库实施步骤
文章目录 1.定义范围2.确定需求3.逻辑设计1)建立需要的数据列表2)识别数据源3)制作实体关系图 4.物理设计1)性能优化2)数仓的拓展性 5.装载数据6.…...
GridSearchCV 工具介绍
目录 1、定义 2、工作流程 3、示例代码 4、总结 1、定义 GridSearchCV 是一个用于超参数调优的工具,它在给定的参数网格中执行交叉验证,以确定最佳的参数组合。通过穷举搜索(exhaustive search)来寻找最佳参数,即…...
基于 SSM 框架的旅游文化管理平台
本系统采用基于JAVA语言实现、架构模式选择B/S架构,Tomcat7.0及以上作为运行服务器支持,基于JAVA等主要技术和框架设计,idea作为开发环境,数据库采用MYSQL5.7以上。 开发环境: JDK版本:JDK1.8 服务器&…...
chatgpt技术总结(包括transformer,注意力机制,迁移学习,Ray,TensorFlow,Pytorch)
最近研读了一些技术大咖对chatgpt的技术研讨,结合自己的一些浅见,进行些许探讨。 我们惊讶的发现,chatgpt所使用的技术并没有惊天地泣鬼神的创新,它只是将过去的技术潜能结合现在的硬件最大化的发挥出来,也正因如此&am…...
vertx的学习总结4
一、异步数据和事件流 1.为什么流是事件之上的一个有用的抽象? 2.什么是背压,为什么它是异步生产者和消费者的基础? 3.如何从流解析协议数据? 1. 答:因为它能够将连续的事件序列化并按照顺序进行处理。通过将事件…...
SpringBoot心旅售票管理系统
本心旅售票管理系统采用基于JAVA语言实现、架构模式选择B/S架构,Tomcat7.0及以上作为运行服务器支持,基于JAVA、springboot、vue等主要技术和框架设计,idea作为开发环境,数据库采用MYSQL5.7以上。 采用技术: SpringBootVueMySQL...
CUDA C编程权威指南:1-基于CUDA的异构并行计算
什么是CUDA?CUDA(Compute Unified Device Architecture,统一计算设备架构)是NVIDIA(英伟达)提出的并行计算架构,结合了CPU和GPU的优点,主要用来处理密集型及并行计算。什么是异构计算࿱…...
R语言易错点(持续更新中~~)
1.R向量元素的索引(下标)是从1开始的,而非0 >x [1] 1 2 4>x[3] [1] 4 2.[]和[ [ ] ] mylist<-list(stud.id1234,stud.name"Tom",stud.marksc(10,3,14,25,19)) > mylist $stud.id [1] 1234$stud.name [1] "Tom"$stud.marks [1] 10…...
Multisim14.0仿真(二十七)基于UC3842的反激式开关电源的设计及仿真
一、UC3842简介: UC3842为固定频率电流模式PWM控制器。它们是专门为OFF−线和直流到直流转换器应用与最小的外部组件。内部实现的电路包括用于精确占空比控制的修剪振荡器、温度补偿参考、高增益误差放大器、电流传感比较器和理想适合于驱动功率MOSFET的高电流温度极…...
SpringMVC(二)@RequestMapping注解
我们先新建一个Module。 我们的依赖如下所示: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaL…...
NXP公司K60N512+PWM控制BLDC电机
本篇文章介绍了使用NXP公司提供的塔式快速原型系统来驱动控制带霍尔传感器的无刷直流电机。文章涉及的塔式快速原型系统主要包括以下四个独立板卡:1.塔式系统支撑模块(TWR-Elevator),用以连接微控制器以及周边模块;2.低…...
CAA的VS Studio安装
文章目录 一、官网下载VS Studio二、勾选如下安装信息三、更改软件安装位置四、17专业版密钥 一、官网下载VS Studio 官网下载地址: https://visualstudio.microsoft.com/zh-hans/downloads/ 下载对应版本后,以VS Studio2017为例: 二、勾…...
条件查询和数据查询
一、后端 1.controller层 package com.like.controller;import com.like.common.CommonDto; import com.like.entity.User; import com.like.service.UserService; import jakarta.annotation.Resource; import org.springframework.web.bind.annotation.GetMapping; import …...
JSP旅游平台管理
本系统采用基于JAVA语言实现、架构模式选择B/S架构,Tomcat7.0及以上作为运行服务器支持,基于JAVA、JSP等主要技术和框架设计,idea作为开发环境,数据库采用MYSQL5.7以上。 开发环境: JDK版本:JDK1.8 服务器&…...
简单走近ChatGPT
目录 一、ChatGPT整体背景认知 (一)ChatGPT引起关注的原因 (二)与其他公司的竞争情况 二、NLP学习范式的发展 (一)规则和机器学习时期 (二)基于神经网络的监督学习时期 &…...
10.3作业
#include <myhead.h> int main(int argc, const char *argv[]) { mkfifo(“./f1”,0777); mkfifo(“./f2”,0777); pid_t cpid fork(); if(0 < cpid) { int fdw open(“./f1”,O_WRONLY); int fdr open(“./f2”,O_RDONLY); char buf[128] “”; while(1) { bzero…...
Springboot中的@Import注解~
Import注解是Spring框架中的注解之一,用于导入其他配置类或者组件 Import注解的作用有以下几点: 导入其他配置类:可以使用Import注解导入其他的配置类,将其加入到当前配置类中,从而可以共享配置信息 导入其他组件&am…...
Linux 安全 - SUID机制
文章目录 一、文件权限位二、SUID简介 一、文件权限位 (1) $ ls -l text.txt -rw-rw-r-- 1 yl yl 0 Sep 28 16:25 text.txt其中第一个字段-rw-rw-r–,我们可以把它分为四部分看: -rw-rw-r--(1)- &a…...
网站后台编辑器内容不显示/上海网站制作推广
我有两个双数组,如下所示double[] x { 2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2.0, 1.0, 1.5, 1.1 };double[] y { 2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9 };最佳答案 以下是使用SimpleMatrix执行此操作的一种方法,但我还没有测试过代码:double[] x { 2.5, …...
张店学校网站建设方案/seo1域名查询
1.Apache配置PHP个人认为首先要注意的是Apache和PHP的版本信息,不同的版本之间所要进行设置的参数是不同的,开始的盲目让自己受尽了苦头。 2.选择版本:Apache 2.2.14 PHP:5.2.5 具体细节不再赘述。。。3.验证Apache和PHP是否安装成功&#x…...
wordpress表格样式插件/今日油价最新
清华申请退学博士作品:完全用 Linux 工作LonelyJames按: 尽管我们已经不习惯看长篇大论, 但我还是要说, 这是一篇值得你从头读到尾的长篇文章.2005 年 9 月 22 日,清华在读博士生王垠在水木社区 BLOG 上发表了《清华梦的粉碎--写给清华大学的退学申请》明…...
东莞公司注册地址变更流程/青岛seo推广
题目链接:http://poj.org/problem?id1068 思路分析:对栈的模拟,将栈中元素视为广义表,如 (((()()()))),可以看做 LS < a1, a2..., a12 >,对于可以配对的序列,如 <a4, a5>看做一个元素…...
做网站的安全证书/百度关键词排名推广话术
过去的几年中,“统方”事件频频发生,有关医药代表与医生、信息科人员勾结,非法获取医疗统方数据的报道层出不穷。 近两三年内,从卫生部到各省卫生厅,各级主管单位陆续出台若干项法律法规,严格禁止商业非法“…...
大学网站群建设方案/seo怎样才能优化网站
项目路径饼图动态获取数据的两种方式前台代码Insert title here//引入两个js文件//展示图的div,需要设置宽度高度,以及设置idvar myChart echarts.init(document.getElementById(main));option {tooltip: {trigger: item,formatter: "{a} {b}: {c…...