堆的初步认识
在学习本节文章前要先了解:大顶堆与小顶堆: (优先级队列_加瓦不加班的博客-CSDN博客)
堆实现
计算机科学中,堆是一种基于树的数据结构,通常用完全二叉树实现。
什么叫完全二叉树?
答:
1.除了最后一层不用满足有两个分支,其他层都要满足有两个分支
2.如果再往完全二叉树中加一个节点,那么必须靠左添加,从左往右依次填满,左边没有填满之前,右边就不能填,如图:
添加前:
添加后:
堆的特性如下:堆分为两种:大顶堆与小顶堆
在大顶堆中,任意节点 C 与它的父节点 P 符合 P.value >= C.value:父节点的值>=子节点的值
而小顶堆中,任意节点 C 与它的父节点 P 符合 P.value <= C.value:父节点的值<=子节点的值
最顶层的节点(没有父亲)称之为 root 根节点
例1 - 满二叉树(Full Binary Tree)特点:每一层都是填满的
例2 - 完全二叉树(Complete Binary Tree)特点:最后一层可能未填满,靠左对齐
大顶堆
大顶堆中,任意节点 C 与它的父节点 P 符合 P.value >= C.value:父节点的值>=子节点的值
代码实现:
/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02 10:41* @Description: TODO 大顶堆Plus_增加了堆化等方法* @Version: 1.0*/
public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}private boolean isEmpty(){if(size==0){return true;}return false;}/*** 删除指定索引处元素 这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered > array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int max = parent;//left < size:必须是有效的索引 不可能超出数组最大长度吧if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {
// int[] array = {1, 2, 3, 4, 5, 6, 7};
// MaxHeap maxHeap = new MaxHeap(array);
// System.out.println(Arrays.toString(maxHeap.array));//TODO 利用堆来实现排序//1. heapify 建立大顶堆//2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆//3. 重复第二步直至堆里剩一个元素int[] array = {1, 2, 3, 4, 5, 6, 7};//1. heapify 建立大顶堆MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));//3. 重复第二步直至堆里剩一个元素while(maxHeap.size>1){//将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆maxHeap.swap(0, maxHeap.size-1);maxHeap.size--;maxHeap.down(0);}System.out.println(Arrays.toString(maxHeap.array));}
}
小顶堆
小顶堆中,任意节点 C 与它的父节点 P 符合 P.value <= C.value:父节点的值<=子节点的值
代码实现:
/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02 10:41* @Description: TODO 小顶堆Plus_增加了堆化等方法* @Version: 1.0*/
public class MinHeap {int[] array;int size;public MinHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}private boolean isEmpty(){if(size==0){return true;}return false;}public boolean isFull(){return size==array.length;}/*** 删除指定索引处元素 这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered < array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MinHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;//left < size:必须是有效的索引 不可能超出数组最大长度吧if (left < size && array[left] < array[min]) {min = left;}if (right < size && array[right] < array[min]) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {
// int[] array = {1, 2, 3, 4, 5, 6, 7};
// MaxHeap maxHeap = new MaxHeap(array);
// System.out.println(Arrays.toString(maxHeap.array));//1. heapify 建立小顶堆//2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆//3. 重复第二步直至堆里剩一个元素int[] array = {1, 2, 3, 4, 5, 6, 7};//1. heapify 建立大顶堆MinHeap maxHeap = new MinHeap(array);System.out.println(Arrays.toString(maxHeap.array));//3. 重复第二步直至堆里剩一个元素while(maxHeap.size>1){//将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆maxHeap.swap(0, maxHeap.size-1);maxHeap.size--;maxHeap.down(0);}System.out.println(Arrays.toString(maxHeap.array));}
}
完全二叉树可以使用数组来表示
那完全二叉树显然是个非线性的数据结构,但是它存储的时候可以使用线性的数组结构来存储数据:
特征
如果从索引 0 开始存储节点数据
节点 i 的父节点为 floor((i-1)/2),当 i>0 时
节点 i 的左子节点为 2i+1,右子节点为 2i+2,当然它们得 < size
如果从索引 1 开始存储节点数据
节点 i 的父节点为 floor(i/2),当 i > 1 时
节点 i 的左子节点为 2i,右子节点为 2i+1,同样得 < size
堆的优化
以大顶堆为例,相对于之前的优先级队列,增加了堆化等方法:
public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}/*** 删除指定索引处元素 这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered > array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int max = parent;//left < size:必须是有效的索引 不可能超出数组最大长度吧if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {int[] array = {1, 2, 3, 4, 5, 6, 7};MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));}
}
Floyd 建堆算法作者(也是之前龟兔赛跑判环作者):
如果对龟兔赛跑判环不了解的可以查看此文章:
-
找到最后一个非叶子节点 (叶子节点:没有孩子的节点)
-
从后向前,对每个节点执行下潜
一些规律
-
一棵满二叉树节点个数为 2^h-1,如下例中高度 h=3 节点数是 2^3-1=7
-
非叶子节点范围为 [0, size/2-1]
算法时间复杂度分析
下面看交换次数的推导:设节点高度为 3
每一层的交换次数为:节点个数*此节点交换次数,总的交换次数为
即 h:总高度 i:本层高度
在 Wolfram|Alpha: Computational Intelligence 输入
Sum[\(40)Divide[Power[2,x],Power[2,i]]*\(40)i-1\(41)\(41),{i,1,x}]
推导出
通用堆
通用heap :可以扩容的 heap, max 用于指定是大顶堆还是小顶堆
/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02 15:56* @Description: TODO 通用heap :可以扩容的 heap, max 用于指定是大顶堆还是小顶堆* @Version: 1.0*/
public class Heap {int[] array;int size;boolean max;public int size() {return size;}//当max为true则为大顶堆 如果是false则为小顶堆public Heap(int capacity, boolean max) {this.array = new int[capacity];this.max = max;}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {int top = array[0];swap(0, size - 1);size--;down(0);return top;}/*** 删除指定索引处元素** @param index 索引* @return 被删除元素*/public int poll(int index) {int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素** @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素*/public void offer(int offered) {if (size == array.length) {grow();}up(offered);size++;}//如果容量不够就进行扩容private void grow() {int capacity = size + (size >> 1);int[] newArray = new int[capacity];//将原有的数组重新放到扩容好的数组中System.arraycopy(array, 0,newArray, 0, size);array = newArray;}// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;boolean cmp = max ? offered > array[parent] : offered < array[parent];if (cmp) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public Heap(int[] array, boolean max) {this.array = array;this.size = array.length;this.max = max;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;if (left < size && (max ? array[left] > array[min] : array[left] < array[min])) {min = left;}if (right < size && (max ? array[right] > array[min] : array[right] < array[min])) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}}
相关文章:
堆的初步认识
在学习本节文章前要先了解:大顶堆与小顶堆: (优先级队列_加瓦不加班的博客-CSDN博客) 堆实现 计算机科学中,堆是一种基于树的数据结构,通常用完全二叉树实现。 什么叫完全二叉树? 答&#x…...
CycleGAN模型之Pytorch实战
一、CycleGAN基本介绍 1. CycleGAN论文:《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》 2. 原文代码:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 3. 网传精简代码:https://github.com/aitorzip/PyTorch-CycleGAN …...
C++(STL容器适配器)
前言: 适配器也称配接器(adapters)在STL组件的灵活组合运用功能上,扮演着轴承、转换器的角色。 《Design Patterns》对adapter的定义如下:将一个class的接口转换为另一个class的接口,使原本因接口不兼容而…...
软考 系统架构设计师系列知识点之软件架构风格(7)
接前一篇文章:软考 系统架构设计师系列知识点之软件架构风格(6) 这个十一注定是一个不能放松、保持“紧”的十一。由于报名了全国计算机技术与软件专业技术资格(水平)考试,11月4号就要考试,因此…...
【Vue3】自定义指令
除了 Vue 内置的一系列指令 (比如 v-model 或 v-show) 之外,Vue 还允许你注册自定义的指令 (Custom Directives)。 1. 生命周期钩子函数 一个自定义指令由一个包含类似组件生命周期钩子的对象来定义。钩子函数会接收到指令所绑定元素作为其参数。 在 <script …...
UG\NX CAM二次开发 加工模块获取 UF _ask_application_module
文章作者:代工 来源网站:NX CAM二次开发专栏 简介: UG\NX CAM二次开发 加工模块获取 UF _ask_application_module 代码: void MyClass::do_it() { // TODO: add your code here // 获取NX当前所在的模块 int module_id = 0; // UF_ask_application_module(&…...
借助GPU算力编译Android
借助GPU算力编译Android 借助GPU编译Android代码的意义在于提高编译的效率和速度。传统的CPU编译方式在处理大量代码时可能会遇到性能瓶颈,而GPU编译利用了显卡的并行计算能力,可以同时处理多个任务,加快编译过程。通过利用GPU的并行计算能力,可以将编译过程中的多个任务分…...
docker-compose一键部署mysql
1.创建安装目录 mnt为硬盘挂载目录,根据实际情况修改 mkdir -p /mnt/mysql cd /mnt/mysql vim docker-compose.yml2.编写docker-compose.yml version: 3.1 services:db:image: mysql:5.7 #mysql版本volumes:- ./data/db:/var/lib/mysql #数据文件- ./etc/my.cnf:/…...
MATLAB 函数签名器
文章目录 MATLAB 函数签名器注释规范模板参数类型 kind数据格式 type选项的支持 使用可执行程序封装为m函数程序输出 编译待办事项推荐阅读附录 MATLAB 函数签名器 MATLAB 函数签名器 (FUNCSIGN) ,在规范注释格式的基础上为函数文件或类文件自动生成函数签名&#…...
2019强网杯随便注bugktu sql注入
一.2019强网杯随便注入 过滤了一些函数,联合查询,报错,布尔,时间等都不能用了,尝试堆叠注入 1.通过判断是单引号闭合 ?inject1-- 2.尝试堆叠查询数据库 ?inject1;show databases;-- 3.查询数据表 ?inject1;show …...
Html+Css+Js计算时间差,返回相差的天/时/分/秒(从未来的一个日期时间到当前日期时间的差)。
Html部分 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title></title><link rel"stylesheet" type"text/css" href"css/index.css" /><script src"js/index.js" t…...
mybatis项目启动报错:reader entry: ���� = v
问题再现 解决方案一 由于指定的VFS没有找,mybatis启用了默认的DefaultVFS,然后由于DefaultVFS的内部逻辑,从而导致了reader entry乱码。 去掉mybatis配置文件中关于别名的配置,然后在mapper.xml文件中使用完整的类名。 待删除的…...
【GIT版本控制】--什么是版本控制
一、为什么需要版本控制? 版本控制是在软件开发和许多其他领域中非常重要的工具,因为它解决了许多与协作、追踪更改和管理项目相关的问题。以下是一些主要原因,解释了为什么需要版本控制: 追踪更改历史: 版本控制系统允许您准确…...
ChatGPT付费创作系统V2.3.4独立版 +WEB端+ H5端 + 小程序最新前端
人类小徐提供的GPT付费体验系统最新版系统是一款基于ThinkPHP框架开发的AI问答小程序,是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。当前全民热议ChatGPT,流量超级大,引流不要太简单!一键下单即可拥有自己的GPT࿰…...
GEE16: 区域日均降水量计算
Precipitation 1. 区域日均降水量计算2. 降水时间序列3. 降水数据年度时间序列对比分析 1. 区域日均降水量计算 今天分析一个计算区域日均降水量的方法: 数据信息: Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a…...
打开MySQL数据库
在命令行里输入mysql --version就可以查看: mysql -uroot -p之前设置的密码(不用输入)就可登录成功:...
玩转ChatGPT:DALL·E 3生成图像
一、写在前面 好久不更新咯,因为没有什么有意思的东西分享的。 今天更新,是因为GPT整合了自家的图像生成工具,名字叫作DALLE 3。 DALLE 3是OpenAI推出的一种生成图像的模型,它基于GPT-3架构进行训练,但是它的主要目…...
小程序入门笔记(一) 黑马程序员前端微信小程序开发教程
微信小程序基本介绍 小程序和普通网页有以下几点区别: 运行环境:小程序可以在手机的操作系统上直接运行,如微信、支付宝等;而普通网页需要在浏览器中打开才能运行。 开发技术:小程序采用前端技术进行开发,…...
【进程管理】初识进程
一.何为进程 教材一般会给出这样的答案: 运行起来的程序 或者 内存中的程序 这样说太抽象了,那我问程序和进程有什么区别呢?诶?这我知道,书上说,动态的叫进程,静态的叫程序。那么静态和动态又是什么意思…...
ArcGIS Maps SDK for JS:监听按钮点击事件控制图层的visible属性
文章目录 1 需求描述2 解决方案 1 需求描述 现在有这么一个需求:在地图中添加一些图层,添加图层列表按钮。打开图层列表后用户会打开某些图层使其可见,要求关闭图层列表时,隐藏某些图层(若visibletrue) 2…...
微信小程序-1
微信开发文档 https://developers.weixin.qq.com/miniprogram/dev/framework/ 报错在调试器的console里找 一、结构 Ctrl 放大字体 Ctrl - 缩小 设置 - - - 外观设置 - - - 可以修改喜欢的主题颜色 index.js index.json index.wxml 》 html <view class"box&qu…...
不容易解的题10.5
31.下一个排列 31. 下一个排列 - 力扣(LeetCode)https://leetcode.cn/problems/next-permutation/?envTypelist&envIdZCa7r67M会做就不算难题,如果没做过不知道思路,这道题将会变得很难。 这道题相当于模拟cpp的next_permu…...
后端面经学习自测(二)
文章目录 1、Http1.1和2.0的区别大概是什么?HTTP & HTTPS 2、HTTP,用户后续的操作,服务端如何知道属于同一个用户cookie & session & token手机验证码登录流程SSO单点登录 3、如果服务端是一个集群机器?4、hashmap是线…...
使用Jest测试Cesium源码
使用Jest测试Cesium源码 介绍环境Cesium安装Jest安装Jest模块包安装babel安装Jest的VSC插件 测试例子小结 介绍 在使用Cesium时,我们常常需要编写自己的业务代码,其中需要引用Cesium的源码,这样方便调试。此外,目前代码中直接使用…...
buuctf-[GXYCTF2019]禁止套娃 git泄露,无参数rce
用dirsearch扫一下,看到flag.php 访问一下没啥东西,使用githack python2 GitHack.py http://8996e81f-a75c-4180-b0ad-226d97ba61b2.node4.buuoj.cn/.git/查看index.php <?php include "flag.php"; echo "flag在哪里呢?…...
【逐步剖C】-第十一章-动态内存管理
一、为什么要有动态内存管理 从我们平常的学习经历来看,所开辟的数组一般都为固定长度大小的数组;但从很多现实需求来看需要我们开辟一个长度“可变”的数组,即这个数组的大小不能在建立数组时就指定,需要根据某个变量作为标准。…...
【树】树的直径和重心
目录 一.树的直径 (1)定义 (2)思路 (3)例题 (4)std(第一小问) 二.树的重心 (1)介绍 (2)求重心 (3)例…...
《Attention Is All You Need》论文笔记
下面是对《Attention Is All You Need》这篇论文的浅读。 参考文献: 李沐论文带读 HarvardNLP 《哈工大基于预训练模型的方法》 下面是对这篇论文的初步概览: 对Seq2Seq模型、Transformer的概括: 下面是蒟蒻在阅读完这篇论文后做的一…...
C++笔记之不同buffer数量下的生产者-消费者机制
C笔记之不同buffer数量下的生产者-消费者机制 文章目录 C笔记之不同buffer数量下的生产者-消费者机制0.在不同的缓冲区数量下,生产者-消费者机制的实现方式和行为的区别1.最简单的生产者-消费者实现:抄自 https://mp.weixin.qq.com/s/G1lHNcbYU1lUlfugXn…...
编码文字使用整数xyz 三个坐标 并使用
导航 说明原始描述AI理解的实现代码说明 原始描述 而后期的,相同的s,前缀差距 和 自身权重 要对应的上,或者说 假设每个序列都是三维空间上的点集合,使用最小的空间表达这些信息,整个数据集才是重点。这些点的集合可以 是空间直线或者是曲线 整体的思路是 一个集合能在任…...
上海中学图片/seo标题优化
2019独角兽企业重金招聘Python工程师标准>>> 概述 本文档是在AT91SAM9X25平台上进行SylixOS CAN总线驱动开发时,对CAN总线底层传输流程的解析。 适用于正在学习CAN总线驱动的技术工程师。 技术实现 CAN总线的传输流程可以分成两个部分: 一…...
蓝色大气企业网站/seo基础课程
车道线检测是将车道标记识别为近似曲线的过程,被广泛用于自动驾驶汽车的车道线偏离警告和自适应巡航控制。流行的分两步解决问题的pipeline:特征提取和后处理。虽然有用,但效率低下,在学习全局上下文和通道的长而细的结构方面存在…...
wordpress 主题调试/ui设计公司
一、问题 假设山洞中有N种宝物,每种宝物有一定的重量w和相应的价值v,大盗的运载能力有限,只能随身携带重量M的宝物,一种宝物只能拿一样,宝物可以分割。那么怎么才能一次带走宝物的价值最大呢? 二、分析 …...
如何推广一个app/网络优化网站
用户管理 用户创建 执行下面的命令新建一个用户 (S3 接口): radosgw-admin user create —uid{username} —display-name”{display-name}” [—email{email}] 实例如下: radosgw-admin user create —uidjohndoe —display-name”John Doe” —emailjohnexample.com 获取…...
qq游戏做任务领铜板网站/有什么平台可以发广告
最近,IBM发布了针对IBMWebSphereApplication Server V7和V8.0 的服务终止公告 ,于2018年4月生效。 如果您当前是V7或V8.0用户,则此公告意味着您必须迁移到WebSphere Application Server V9。 通过迁移到V9,您可以将应用程序基础结…...
wordpress编辑文章页面打开特别慢/网站快速排名优化价格
官方推荐的代码习惯, 有必要看看 转载于:https://www.cnblogs.com/lion-witcher/p/6377093.html...