当前位置: 首页 > news >正文

ChatGLM2-6B的通透解析:从FlashAttention、Multi-Query Attention到GLM2的微调、源码解读

前言

本文最初和第一代ChatGLM-6B的内容汇总在一块,但为了阐述清楚FlashAttention、Multi-Query Attention等相关的原理,以及GLM2的微调、源码解读等内容,导致之前那篇文章越写越长,故特把ChatGLM2相关的内容独立抽取出来成本文

第一部分 相比第一代的改进点:FlashAttention与Multi-Query Attention

ChatGLM2-6B(GitHub项目地址、HuggingFace地址)是开源中英双语对话模型 ChatGLM-6B 的第二代版本,相比第一代,第二点引入了如下新特性:

  • 数据集上
    经过了 1.4T 中英标识符的预训练与人类偏好对齐训练
  • 更长的上下文
    基于 FlashAttention 技术,将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话
    (当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,会在后续迭代升级中着重进行优化)
  • 更高效的推理
    基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K
  • 模型架构上变成了decoder only的架构
    chatglm还是encoder架构,但是到了chatglm2 变成了decoder only的架构(这点很少有资料会提及到),何以见得呢?
    如七月黄老师所说,chatglm2仓库的modeling用了新版pytorch的这个函数:context_layer

    context_layer 这个函数实现了attention机制的计算,入参 is_causal=True 表示遮后看前的mask(这种类型的注意力通常用在transformer的decoder部分,以确保当前位置只能关注到之前的位置,俗称“看不见未来”,从而使模型可以进行自回归预测 )

  • 允许商业使用
  • 准确性不足
    尽管模型在训练的各个阶段都尽力确保数据的合规性和准确性,但由于 ChatGLM2-6B 模型规模较小,且模型受概率随机性因素影响,无法保证输出内容的准确性,且模型易被误导

第二部分 FlashAttention:减少内存访问提升计算速度——更长上下文的关键

FlashAttention是斯坦福联合纽约州立大学在22年6月份提出的一种具有 IO 感知,且兼具快速、内存高效的新型注意力算法「对应论文为:FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,这是其GitHub地址,这是其解读之一,该解读也是本第二部分的重要参考」

2.1 FlashAttention相关的背景知识

2.1.1 transformer模型的计算复杂度和空间复杂度

它要解决一个什么样的问题呢?

首先,GPT3、LLaMA、ChatGLM、BLOOM等大语言模型输入输出的最大序列长度只有2048或4096,扩展到更长序列的难度在哪里呢?本质原因是,transformer模型的计算复杂度和空间复杂度都是 O(N^2)​的,其中N​为序列长度
具体地,当输入批次大小为 b​ ,序列长度为 N​ 时
\rightarrow​  l​ 层transformer模型的计算量为 l *\left(24 b N h^{2}+4 b N^{2} h\right)​,h​是隐藏层维度通常等于词向量维度,可能不少同学都会疑问这个计算量是怎么一步一步计算得来的,下面详细拆解下这个计算过程

  1. 首先,我们知道,transformer模型由 l​ 个相同的层组成,每个层分为两部分:self-attention块和MLP块
    self-attention块的模型参数有两部分,一部分是Q​、K​、V​的权重矩阵W_Q​、W_K​、W_V​和偏置,另一部分是输出权重矩阵W_O​和偏置

    故第一步就是计算Q​、K​、V
    Q=x W_{Q}, K=x W_{K}, V=x W_{V}
    该矩阵乘法的输入和输出形状为 [b, N, h] \times[h, h] \rightarrow[b, N, h]
    计算量为:3 * 2 b N h^{2}=6 b N h^{2}
  2. 计算Q K^T
    该部分的输入和输出形状为
    \left[b, h e a d \_n u m, l, p e r \_h e a d \_h i d d e n \_s i z e\right]​ \times​ \left[b, h e a d \_n u m, p e r \_h e a d \_h i d d e n \_s i z e\right. , N] \rightarrow\left[b, h e a d \_n u m, N, l\right]
    计算量为:2bN^2h
  3. 计算在V​上的加权 score \cdot V
    该部分矩阵乘法的输入和输出形状为
    \left[b, h e a d \_n u m, l, l\right] \times\left[b, h e a d \_n u m, l, p e r \_h e a d \_h i d d e n \_s i z e\right]​ \rightarrow\left[b, h e a d \_n u m, N, p e r \_h e a d \_h i d d e n \_s i z e\right]
    计算量为:2bN^2h
  4.  attention后的线性映射,矩阵乘法的输入和输出形状为[b, N, h] \times[h, h] \rightarrow[b, N, h]
    计算量为2bNh^2

    最终自注意力层的输出结果为
    x_{o u t}=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{h}}\right) \cdot V \cdot W_{o}+x
  5. 接下来计算MLP层,MLP块由2个线性层组成,一般地,第一个线性层是,第二个线性层再将维度从 4h​映射到h
    x=f_{\text {gelu }}\left(x_{\text {out }} W_{1}\right) W_{2}+x_{\text {out }}

    第一个线性层的权重矩阵 W_1​ 的形状为 [h,4h]​,相当于先将维度从 h​ 映射到4h​,矩阵乘法的输入和输出形状为[b, N, h] \times[h, 4 h] \rightarrow[b, N, 4 h]​,计算量为 8bNh^2
    第二个线性层的权重矩阵 W_2​ 的形状为 [4h,h]​,相当于再将维度从 4h​映射到 h​,矩阵乘法的输入和输出形状为[b, N, 4 h] \times[4 h, h] \rightarrow[b, N, h]​,计算量为 8bNh^2
  6. 将上述所有表粗所示的计算量相加,得到每个transformer层的计算量大约为
    24 b N h^{2}+4 b N^{2} h
  7. 此外,另一个计算量的大头是logits的计算(毕竟词嵌入矩阵的参数量也较多),将隐藏向量映射为词表大小,说白了,词向量维度通常等于隐藏层维度h​ ,词嵌入矩阵的参数量为Vh​,最后的输出层的权重矩阵通常与词嵌入矩阵是参数共享的「解释一下,如七月杜老师所说,这个是transformer中一个重要的点,参数共享可以减小参数量,词嵌入矩阵是[vocab_size,hidden_size],输出层矩阵是 [hidden_size,vocab_size],是可以共享的」
    其矩阵乘法的输入和输出形状为[b, N, h] \times[h, V] \rightarrow[b, N, V]​,计算量为 2bNhV
  8. 因此,对于一个 l​ 层的transformer模型,输入数据形状为 [b,N]​的情况下,一次训练迭代的计算量为
    l *\left(24 b N h^{2}+4 b N^{2} h\right)+2 b N h V

\rightarrow​  中间激活的显存大小为l *\left(34 b N h+5 b N^{2} a\right)​  ,其中 a​ 为注意力头数「至于这个结果的具体推导过程见此文《分析transformer模型的参数量、计算量、中间激活、KV cache》
可以看到,transformer模型的计算量和储存复杂度随着序列长度 N 呈二次方增长。这限制了大语言模型的最大序列长度 N​ 的大小

其次,GPT4将最大序列长度 N​ 扩大到了32K,Claude更是将最大序列长度 N​ 扩大到了100K,这些工作一定采用了一些优化方法来降低原生transformer的复杂度,那具体怎么优化呢?
我们知道,每个transformer层分为两部分:self-attention块和MLP块。上面计算量中的 4bN^2h​项和中间激活中的5bN^2a​ 项都是self-attention块产生的,与MLP块无关

如此,FlashAttention提出了一种加速计算、节省显存和IO感知的精确注意力,可以有效地缓解上述问题

Meta推出的开源大模型LLaMA,阿联酋推出的开源大模型Falcon都使用了Flash Attention来加速计算和节省显存。目前,Flash Attention已经集成到了pytorch2.0中,另外triton、xformer等开源框架也进行了整合实现

2.1.2 分析GPU的内存分析图:计算的瓶颈是显存访问

通过上文可知,transformer的核心组件self-attention块的计算复杂度和空间复杂度是序列长度 N​的二次方

  1. 对于self-attention块,除了大矩阵乘法是计算受限的,其他操作(计算softmax、dropout、mask)都是内存受限的。
    尽管已经有许多近似注意力的方法尝试减少attention的计算和内存要求。例如,稀疏近似和低秩近似的方法,将计算复杂度降低到了序列长度的线性或亚线性
  2. 但这些近似注意力方法方法并没有得到广泛应用。因为这些方法过于关注FLOPs(浮点数计算次数)的减少,而忽略了IO读写的内存访问开销,导致这并没有效减少运行时间(wall-clock time)
    总之,在现代GPU中,计算速度已经远超过了显存访问速度,transformer中的大部分计算操作的瓶颈是显存访问。对于显存受限的操作,IO感知是非常重要的,因为显存读写占用了大部分的运行时间
  3. 而Flash Attention则是IO感知的,通过减少内存访问,来计算精确注意力,从而减少运行时间,实现计算加速

GPU的内存由多个不同大小和不同读写速度的内存组成。内存越小,读写速度越快。对于A100-40GB来说,内存分级图如下所示

  • SRAM内存分布在108个流式多处理器上,每个处理器的大小为192K。合计为 192 * 108 K B=20,736 K M=20 M B​ 
  • 高带宽内存HBM(High Bandwidth Memory),也就是我们常说的显存,大小为40GB。SRAM的读写速度为19TB/s,而HBM的读写速度只有1.5TB/s,不到SRAM的1/10

所以,上面讲到计算注意力的主要瓶颈是显存访问,因此减少对HBM的读写次数,有效利用更高速的SRAM来进行计算是非常重要的,而GPU有大量的线程来执行某个操作,称为kernel。GPU执行操作的典型方式分为三步:

  1. 每个kernel将输入数据从低速的HBM中加载到高速的SRAM中
  2. 在SRAM中,进行计算
  3. 计算完毕后,将计算结果从SRAM中写入到HBM中

而对于性能受限于内存带宽的操作,进行加速的常用方式就是kernel融合。kernel融合的基本思想是:避免反复执行“从HBM中读取输入数据,SRAM执行计算,最后将计算结果写入到HBM中”,将多个操作融合成一个操作,减少读写HBM的次数(需要注意的是,模型训练通常会影响到算子融合的效果,因为为了后向传递计算梯度,通常需要将某些中间结果写入到HBM中)

2.1.3 safe softmax与Standard Attention

继续行文之前,先补充两个背景知识,一个是safe softmax,一个是Standard Attention

对于第一个背景知识:safe softmax而言

  1. 考虑到向量 \left[x_{1}, x_{2}, \cdots, x_{d}\right]​,原生softmax的计算过程如下:
    \operatorname{softmax}\left(x_{i}\right)=\frac{e^{x_{i}}}{\sum_{j=1}^{d} e^{x_{j}}}
  2. 在实际硬件中,浮点数表示的范围是有限的
    对于float32和bfloat16来说,当 x \geq 89​ 时,e^x​就会变成inf,发生数据上溢的问题
    故为了避免发生数值溢出的问题,保证数值稳定性,计算时通常会“减去最大值”,称为“safe softmax”

    即现在所有的深度学习框架中都采用了“safe softmax”这种计算方式
    m=\max _{i}\left(x_{i}\right) ; \quad \operatorname{softmax}\left(x_{i}\right)=\frac{e^{x_{i}-m}}{\sum_{j=1}^{d} e^{x_{j}-m}}
  3. 在训练语言模型时,通常会采用交叉熵损失函数。交叉熵损失函数等价于先执行log_softmax函数,再计算负对数似然函数
    且在计算log_softmax时,同样会执行“减去最大值”,这不仅可以避免数值溢出,提高数值稳定性,还可以加快计算速度
    \log \left(\operatorname{softmax}\left(x_{i}\right)\right)=\log \left(\frac{e^{x_{i}-m}}{\sum_{j=1}^{d} e^{x_{j}-m}}\right)=x_{i}-m-\log \left(\sum_{j=1}^{d} e^{x_{j}-m}\right)

对于第二个背景知识:Standard Attention

  1. 首先,transformer中注意力机制的计算过程为:
    \operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{\top}}{\sqrt{d}}\right) V
    其中, Q, K, V \in R^{N \times d}​,其中 N​ 是序列长度, d​ 是每个注意力头的维度,输出可以记为 O \in R^{N \times d}​ 
  2. 上面的式子可以拆解为:​
    S=Q K^{\top} \in R^{N \times N}, P=\operatorname{softmax}(S) \in R^{N \times N}, O=P V \in R^{N \times d}
    在标准注意力实现中, S, P \in R^{N \times N}​ 都要写回到HBM中,占用了 O\left(N^{2}\right)​的内存,通常 N \gg d
    例如,对于GPT2, N = 1024​,d = 64​ ;对于GPT3,N = 1028​,d = 128​ 

    总之,注意力矩阵P, S​ 需要的内存 O\left(N^{2}\right)​远大于Q, K, V, O​ 所需要的内存O(N d)
    相当于,self-attention中,大部分操作都是内存受限的逐点运算,例如,对 S​ 的mask操作、 S​ 的softmax操作、对 P​的dropout操作,这些逐点操作的性能是受限于内存带宽的,会减慢运行时间
  3. 下图展示了标准注意力的实现过程

    标准注意力实现存在两个问题:
    1. 显存占用多,过程中由于实例化了完整的注意力矩阵P, S \in R^{N \times N}​ ,导致了 O\left(N^{2}\right)​ 的内存要求
    2. HBM读写次数多,减慢了运行时间(wall- clock time)

// 待更..

第三部分 多查询注意力(Muti Query Attention):各自Query矩阵,但共享Key 和 Value 矩阵

多查询注意力(Muti Query Attention)是 19 年Google一研究者提出的一种新的 Attention 机制(对应论文为:Fast Transformer Decoding: One Write-Head is All You Need、这是其解读之一),其能够在保证模型效果的同时加快 decoder 生成 token 的速度

那其与17年 Google提出的transformer中多头注意力机制(简称MHA)有啥本质区别呢?有意思的是,区别在于:

  • 我们知道MHA的每个头都各自有一份不同的Key、Query、Value矩阵
  • 而MQA 让所有的头之间 共享 同一份 Key 和 Value 矩阵,每个头只单独保留了一份 Query 参数,从而大大减少 Key 和 Value 矩阵的参数量
    总之,MQA 实际上是将 head 中的 key 和 value 矩阵抽出来单独存为一份共享参数,而 query 则是依旧保留在原来的 head 中,每个 head 有一份自己独有的 query 参数

下图对比了多头注意力(Multi-Head Attention)、LLaMA2中分组查询注意力(Grouped-Query Attention)、多查询注意力(Muti Query Attention)的差别

总之,MHA 和 MQA 之间的区别只在于建立 Wqkv Layer 上

# Multi Head Attention
self.Wqkv = nn.Linear(                        # 【关键】Multi-Head Attention 的创建方法self.d_model, 3 * self.d_model,                         # 有 query, key, value 3 个矩阵, 所以是 3 * d_modeldevice=device
)query, key, value = qkv.chunk(                # 【关键】每个 tensor 都是 (1, 512, 768)3, dim=2
)# Multi Query Attention
self.Wqkv = nn.Linear(                                # 【关键】Multi-Query Attention 的创建方法d_model,d_model + 2 * self.head_dim,                      # 只创建 query 的 head 向量,所以只有 1 个 d_modeldevice=device,                                    # 而 key 和 value 不再具备单独的头向量
)query, key, value = qkv.split(                        # query -> (1, 512, 768)[self.d_model, self.head_dim, self.head_dim],     # key   -> (1, 512, 96)dim=2                                             # value -> (1, 512, 96)
)

对比上面的代码,你可以发现

  • 在 MHA 中,query, key, value 每个向量均有 768 维度
  • 而在 MQA 中,只有 query 是 768 维,而 key 和 value 均只剩下 96 维了,恰好是 1 个 head_dim 的维度

因此,可以确认:在 MQA 中,除了 query 向量还保存着 8 个头,key 和 value 向量都只剩 1 个「公共头」了,这也正好印证了论文中所说的「所有 head 之间共享一份 key 和 value 的参数」

剩下的问题就是如何将这 1 份参数同时让 8 个头都使用,代码里使用矩阵乘法 matmul 来广播,使得每个头都乘以这同一个 tensor,以此来实现参数共享:

def scaled_multihead_dot_product_attention(query,key,value,n_heads,multiquery=False,):q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)         # (1, 512, 768) -> (1, 8, 512, 96)kv_n_heads = 1 if multiquery else n_headsk = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)        # (1, 512, 768) -> (1, 8, 96, 512) if not multiquery # (1, 512, 96) -> (1, 1, 96, 512)  if multiqueryv = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)      # (1, 512, 768) -> (1, 8, 512, 96) if not multiquery # (1, 512, 96) -> (1, 1, 512, 96)  if multiqueryattn_weight = q.matmul(k) * softmax_scale                       # (1, 8, 512, 512)attn_weight = torch.softmax(attn_weight, dim=-1)                # (1, 8, 512, 512)out = attn_weight.matmul(v)                                     # (1, 8, 512, 512) * (1, 1, 512, 96) = (1, 8, 512, 96)out = rearrange(out, 'b h s d -> b s (h d)')                    # (1, 512, 768)return out, attn_weight, past_key_value

第四部分 模型的使用/部署、微调

4.1 模型的使用/部署

  1. 首先需要下载本仓库:
    git clone https://github.com/THUDM/ChatGLM2-6B
    cd ChatGLM2-6B
  2. 然后使用 pip 安装依赖:
    pip install -r requirements.txt
    
    其中 transformers 库版本推荐为 4.30.2torch 推荐使用 2.0 及以上的版本,以获得最佳的推理性能
  3. 代码调用
    可以通过如下代码调用 ChatGLM2-6B 模型来生成对话:
    >>> from transformers import AutoTokenizer, AutoModel
    >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
    >>> model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device='cuda')
    >>> model = model.eval()
    >>> response, history = model.chat(tokenizer, "你好", history=[])
    >>> print(response)
    你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。
    >>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
    >>> print(response)
    晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:
    1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。
    2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。
    3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。
    4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。
    5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。
    6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。

    如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议

从本地加载模型

以上代码会由 transformers 自动下载模型实现和参数

完整的模型实现在 Hugging Face Hub。如果你的网络环境较差,下载模型参数可能会花费较长时间甚至失败。此时可以先将模型下载到本地,然后从本地加载。

从 Hugging Face Hub 下载模型需要先安装Git LFS,然后运行

git clone https://huggingface.co/THUDM/chatglm2-6b

如果你从 Hugging Face Hub 上下载 checkpoint 的速度较慢,可以只下载模型实现

GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/THUDM/chatglm2-6b

然后从这里手动下载模型参数文件,并将下载的文件替换到本地的 chatglm2-6b 目录下

将模型下载到本地之后,将以上代码中的 THUDM/chatglm2-6b 替换为你本地的 chatglm2-6b 文件夹的路径,即可从本地加载模型。

模型的实现仍然处在变动中。如果希望固定使用的模型实现以保证兼容性,可以在 from_pretrained 的调用中增加 revision="v1.0" 参数。v1.0 是当前最新的版本号,完整的版本列表参见 Change Log

最后,可以通过以下命令启动基于 Gradio 的网页版 demo:

python web_demo.py

在这里插入图片描述

4.2 基于 P-Tuning v2 的微调(官方)

P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行(当然,我司杜老师也会在七月类ChatGPT微调实战课上录一个ChatGLM2-6B的微调视频)

  1. 环境配置
    在原chatglm-6b的环境中安装以下依赖
    pip install rouge_chinese nltk jieba datasets
  2. 微调数据准备
    ADGEN 数据集任务为根据输入(content)生成一段广告词(summary)
    { “content”: “类型#上衣版型#宽松版型#显瘦图案#线条衣样式#衬衫衣袖型#泡泡袖衣款式#抽绳”, “summary”:
    “这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。”
    }
    从 Google Drive 或者 Tsinghua Cloud 下载处理好的 ADGEN 数据集,将解压后的 AdvertiseGen 目录放到本 ptuning 目录下即可
  3. 微调
    修改train.sh文件
    去掉最后的 --quantization_bit 4( 去掉后为FP16 精度加载)
    修改模型路径,THUDM/chatglm-6b修改为/data/sim_chatgpt/chatglm2-6b
    目前专业级GPU Tesla P100也不支持INT4或8量化

    执行train.sh文件
    bash train.sh
    如遇报错:
    wandb.errors.UsageError: api_key not configured (no-tty). call wandb.login(k…
    解决方法:
    在main.py文件中加入下面两行,禁用wandb即可
  4. import os
    os.environ["WANDB_DISABLED"] = "true"
    其中,train.sh 中的 PRE_SEQ_LEN 和 LR 分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。

微调过程显存使用情况如下:

在这里插入图片描述

 微调完成后,在./output/adgen-chatglm2-6b-pt-128-2e-2 下回生成微调好的模型文件。

我们可以对比下微调前后的效果
以命令行 Demo为例,只需修改ptuning路径下web_demo.sh中的模型路径为/data/sim_chatgpt/chatglm2-6b,运行 web_demo.py即可:

bash web_demo.sh

Input:
类型#上衣材质#牛仔布颜色#白色风格#简约图案#刺绣衣样式#外套衣款式#破洞
Label:
简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。

Output[微调前]:

在这里插入图片描述

 Output[微调后]:

乱码,待解决......

 // 待更

相关文章:

ChatGLM2-6B的通透解析:从FlashAttention、Multi-Query Attention到GLM2的微调、源码解读

前言 本文最初和第一代ChatGLM-6B的内容汇总在一块,但为了阐述清楚FlashAttention、Multi-Query Attention等相关的原理,以及GLM2的微调、源码解读等内容,导致之前那篇文章越写越长,故特把ChatGLM2相关的内容独立抽取出来成本文 …...

3D人脸生成的论文

一、TECA 1、论文信息 2、开源情况:comming soon TECA: Text-Guided Generation and Editing of Compositional 3D AvatarsGiven a text description, our method produces a compositional 3D avatar consisting of a mesh-based face and body and NeRF-based ha…...

解决问题:可以用什么方式实现自动化部署

自动化部署可以使用多种工具来实现: 脚本编写:可以使用 Bash、Python 等编写脚本来实现自动化部署。例如,可以使用 Bash 脚本来自动安装、配置和启动应用程序。 配置管理工具:像 Ansible、Puppet、Chef、Salt 等配置管理工具可以…...

【数据结构】链表栈

目录: 链表栈 1. 链式栈的实现2. 链表栈的创建3. 压栈4. 弹栈 链表栈 栈的主要表示方式有两种,一种是顺序表示,另一种是链式表示。本文主要介绍链式表示的栈。 链栈实际上和单链表差别不大,唯一区别就在于只需要对链表限定从头…...

Android笔记:Android 组件化方案探索与思考

组件化项目,通过gradle脚本,实现module在编译期隔离,运行期按需加载,实现组件间解耦,高效单独调试。 先来一张效果图 组件化初衷 APP版本不断的迭代,新功能的不断增加,业务也会变的越来越复杂…...

MeterSphere v2.10.X-lts 双节点HA部署方案

一、MeterSphere高可用部署架构及服务器配置 1.1 服务器信息 序号应用名称操作系统要求配置要求描述1负载均衡器CentOS 7.X /RedHat 7.X2C,4G,200GB部署Nginx,实现负载路由。 部署NFS服务器。2MeterSphere应用节点1CentOS 7.X /RedHat 7.X8C,16GB,200G…...

Java进阶篇--网络编程

​​​​​​​ 目录 计算机网络体系结构 什么是网络协议? 为什么要对网络协议分层? 网络通信协议 TCP/IP 协议族 应用层 运输层 网络层 数据链路层 物理层 TCP/IP 协议族 TCP的三次握手四次挥手 TCP报文的头部结构 三次握手 四次挥手 …...

PyTorch入门之【CNN】

参考:https://www.bilibili.com/video/BV1114y1d79e/?spm_id_from333.999.0.0&vd_source98d31d5c9db8c0021988f2c2c25a9620 书接上回的MLP故本章就不详细解释了 目录 traintest train import torch from torchvision.transforms import ToTensor from torchvi…...

马斯洛需求层次模型之安全需求之云安全浅谈

在互联网云服务领域,安全需求是用户首要考虑的因素之一。用户希望在将数据和信息托付给云服务提供商时,这些数据和信息能够得到充分的保护,避免遭受未经授权的访问、泄露或破坏。这种安全需求的满足,对于用户来说是至关重要的&…...

Pikachu靶场——远程命令执行漏洞(RCE)

文章目录 1. RCE1.1 exec "ping"1.1.1 源代码分析1.1.2 漏洞防御 1.2 exec "eval"1.2.1 源代码分析1.2.2 漏洞防御 1.3 RCE 漏洞防御 1. RCE RCE(remote command/code execute)概述: RCE漏洞,可以让攻击者直接向后台服务器远程注入…...

【WSN】无线传感器网络 X-Y 坐标到图形视图和位字符串前缀嵌入方法研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

Linux定时任务

文章目录 前言设置定时任务流程定时规则例子 终止定时任务列出当前的定时任务重启任务调度 前言 在Linux系统中有时侯需要周期性的自动执行一些命令,这时候Linux定时任务就派上用场了 设置定时任务流程 进入定时任务的编辑模式 crontab -e编辑定时任务&#xff…...

【Overload游戏引擎分析】画场景网格的Shader

Overload引擎地址: GitHub - adriengivry/Overload: 3D Game engine with editor 一、栅格绘制基本原理 Overload Editor启动之后,场景视图中有栅格线,这个在很多软件中都有。刚开始我猜测它应该是通过绘制线实现的。阅读代码发现&#xff0…...

【JavaEE】多线程进阶(一)饿汉模式和懒汉模式

多线程进阶(一) 文章目录 多线程进阶(一)单例模式饿汉模式懒汉模式 本篇主要引入多线程进阶的单例模式,为后面的大冰山做铺垫 代码案例介绍 单例模式 非常经典的设计模式 啥是设计模式 设计模式好比象棋中的 “棋谱”…...

C++树详解

树 树的定义 树(Tree)是n(n≥0)个结点的有限集。n0时称为空树。在任意一颗非空树中:①有且仅有一个特定的称为根(Root)的结点;②当n>1时,其余结点可分为m&#xff08…...

支付环境安全漏洞介绍

1、平台支付逻辑全流程分析 2、平台支付漏洞如何利用?买东西还送钱? 3、BURP抓包分析修改支付金额,伪造交易状态? 4、修改购物车参数实现底价购买商品 5、SRC、CTF、HW项目月入10W副业之路 6、如何构建最适合自己的网安学习路线 1…...

抄写Linux源码(Day16:内存管理)

回忆我们需要做的事情: 为了支持 shell 程序的执行,我们需要提供: 1.缺页中断(不理解为什么要这个东西,只是闪客说需要,后边再说) 2.硬盘驱动、文件系统 (shell程序一开始是存放在磁盘里的,所以需要这两个东…...

Cookie和Session详解以及结合生成登录效果

目录 引言 1.Cookie中的数据从哪来数据长啥样? 2.Cookie有什么作用? 3.cookie与session的工作关联? 4.Cookie到哪去? 5.Cookie如何存? 6.Session 7.Cookie与Session的关联与区别 8.通过代码理解 8.1 相关代码 8.2…...

Spring基础以及核心概念(IoC和DIQ)

1.Spring是什么 Spring是包含了众多工具方法的IoC容器 2.loC(Inversion of Control )是什么 IoC:控制反转,Spring是一个控制反转容器(控制反转对象的生命周期) Spring是一个loC容器,我们之前学过的List/Map就是数据存储的容器,to…...

《C和指针》笔记32:多维数组初始化

文章目录 使用括号进行初始化初始化省略维度 使用括号进行初始化 我们可以给数组赋值一个长长的列表: int matrix[2][3] { 100, 101, 102, 110, 111, 112 };它等价于 matrix[0][0]100; matrix[0][1]101; matrix[0][2]102; matrix[1][0]110; matrix[1][1]111; ma…...

零食食品经营小程序商城的作用是什么

零食几乎可以涵盖每个年龄阶段,同时又是市场中常见的零售批发商品,在多个场景中都有销售/购买属性,对消费者来说,购买零食的渠道多种多样,无论线下还是线上,都可随心而购。 庞大市场升级促进下&#xff0c…...

Java泛型--什么是泛型?

https://www.bilibili.com/video/BV1xJ411n77R?p5&vd_sourcebb1fced25254581cf052adea5e87a1ff 1.泛型类、接口 1.1.泛型类 泛型类的定义 class 类名称 <泛型标识, 泛型标识, ...> {private 泛型标识 变量名;...... }常用的泛型标识&#xff1a;T、E、K、V jav…...

LabVIEW工业虚拟仪器的标准化实施

LabVIEW工业虚拟仪器的标准化实施 创建计算机化的测试和测量系统&#xff0c;从计算机桌面控制外部测量硬件设备&#xff0c;以及在计算机屏幕上显示的类似仪器的面板上查看来自外部设备的测试或测量数据&#xff0c;所有这些都需要虚拟仪器系统软件。该软件允许用户执行所有这…...

JavaScript系列从入门到精通系列第十七篇:JavaScript中的全局作用域

文章目录 前言 1&#xff1a;什么叫作用域 一&#xff1a;全局作用域 1&#xff1a;全局变量的声明 2&#xff1a;变量声明和使用的顺序 3&#xff1a;方法声明和使用的顺序 前言 1&#xff1a;什么叫作用域 可以起作用的范围 function fun(){var a 1; } fun();consol…...

汇编指令集合

...

TinyWebServer整体流程

从main主函数开始&#xff1a; 一、定义MySQL数据库的账号、密码和用到的数据库名称。 二、调用Config获得服务器初始化属性 在这一步确定触发模式端口等信息。 三、创建服务器实例对象 设置根目录、开辟存放http连接对象的空间&#xff0c;开辟定时器空间。 四、利用Confi…...

【Java项目推荐之黑马头条】自媒体文章实现异步上下架(使用Kafka中间件实现)

自媒体文章上下架功能完成 需求分析 流程说明 接口定义 说明接口路径/api/v1/news/down_or_up请求方式POST参数DTO响应结果ResponseResult DTO Data public class WmNewsDto {private Integer id;/*** 是否上架 0 下架 1 上架*/private Short enable;}ResponseResult 自媒…...

自学(黑客)技术方法————网络安全

如果你想自学网络安全&#xff0c;首先你必须了解什么是网络安全&#xff01;&#xff0c;什么是黑客&#xff01;&#xff01; 1.无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防两面性&#xff0c;例如 Web 安全技术&#xff0c;既有 Web 渗透2.也有 Web 防…...

python+playwright 学习-84 Response 接口返回对象

Response 是获取接口响应对象,根据Response 对象可以获取响应的状态码,响应头部,响应正文等内容。 Response 相关操作方法 all_headers 所有响应HTTP标头, 返回Dict 类型 response.all_headers()body 获取 bytes 类型body内容 response.body()json 返回响应主体的 JS…...

GCN详解

a ⃗ \vec{a} a 向量 a ‾ \overline{a} a 平均值 a ‾ \underline{a} a​下横线 a ^ \widehat{a} a (线性回归&#xff0c;直线方程) y尖 a ~ \widetilde{a} a a ˙ \dot{a} a˙ 一阶导数 a \ddot{a} a 二阶导数 H(l)表示l层的节点的特征 W(l)表示l层的参数 D ~ \widet…...

绵阳建设局网站/关键一招

想用单元测试 JUnit 单元测试下写好的方法&#xff0c;发现写 Test 标签报错了&#xff0c;"Test cannot be resolved to a type" 原来是项目没有导入 JUnit 库&#xff0c;解决办法很简单 项目右键 -> Build Path -> Configure Build Path -> Libraries -&…...

可以免费建立网站吗/手机怎么建立网站

urls.py的配置[路由配置] Get请求与Post请求的方式 get请求&#xff1a;&#xff08;1&#xff09;地址栏输入url&#xff08;2&#xff09;<a href"请求url">点击</a>&#xff08;3&#xff09;<form action"请求url" method"get&quo…...

国内外网站建设/网页制作教程步骤

最近第一次接触到AVue框架&#xff0c;我看了很久的文档&#xff0c;感觉踩了很多坑&#xff0c;首先就是插槽。Avu的表格column的每个对象&#xff08;表示表格的列&#xff09;中有属性&#xff1a;slot和formslot&#xff01;&#xff01;&#xff01;我自己理解的它们的区别…...

wordpress怎么备份数据库/株洲seo优化推荐

http://www.zentao.net/book/zentaopmshelp/259.html转载于:https://www.cnblogs.com/linxinmeng/p/7591979.html...

广州做网站的公司/百度竞价推广费用

浏览器对象模型&#xff1a; 作用&#xff1a;访问、控制、修改浏览器&#xff0c;与浏览器进行交互&#xff08;打开新的窗口、回退历史记录、获取url&#xff09; BOM与的DOM区别&#xff1a;JS通过BOM与浏览器进行交互、BOM的window对象包含了document对象&#xff0c;docum…...

公司建网站公司/重庆网络营销

总结&#xff1a; 参考文献&#xff1a;https://sochiji.blog.luogu.org/solution-p1029 1.a * b (a,b) * [a,b] (a,b的最大公约数 * a,b的最小公倍数) 2.如果a的素因数分解为 (x1 ^ p1) * (x2 ^ p2) * (x3 ^ p3) b的素因数分解为 (x1 ^ p4) * (x5 ^ p5) * (x6 ^ p6) 可以增添…...