当前位置: 首页 > news >正文

【蓝桥集训】第七天——并查集

作者:指针不指南吗
专栏:Acwing 蓝桥集训每日一题

🐾或许会很慢,但是不可以停下来🐾

文章目录

  • 1.亲戚
  • 2.合并集合
  • 3.连通块中点的数量

有关并查集的知识学习可以移步至—— 【算法】——并查集

1.亲戚

或许你并不知道,你的某个朋友是你的亲戚。

他可能是你的曾祖父的外公的女婿的外甥女的表姐的孙子。

如果能得到完整的家谱,判断两个人是否是亲戚应该是可行的,但如果两个人的最近公共祖先与他们相隔好几代,使得家谱十分庞大,那么检验亲戚关系实非人力所能及。

在这种情况下,最好的帮手就是计算机。

为了将问题简化,你将得到一些亲戚关系的信息,如Marry和Tom是亲戚,Tom和Ben是亲戚,等等。

从这些信息中,你可以推出Marry和Ben是亲戚。

请写一个程序,对于我们的关于亲戚关系的提问,以最快的速度给出答案。

输入格式

输入由两部分组成。

第一部分以 N,M开始。N 为问题涉及的人的个数。这些人的编号为 1,2,3,…,N。下面有 M 行,每行有两个数 ai,bia_i,b_iai,bi ,表示已知 aia_iaibib_ibi 是亲戚。

第二部分以 Q 开始。以下 Q 行有 Q 个询问,每行为 ci,dic_i,d_ici,di ,表示询问 cic_icidid_idi 是否为亲戚。

输出格式

对于每个询问ci,dic_i,d_ici,di ,输出一行:若 cic_icidid_idi 为亲戚,则输出“Yes”,否则输出“No”。

数据范围

1≤N≤20000,
1≤M≤10610^6106 ,
1≤Q≤10610^6106 .

输入样例:

10 7
2 4
5 7
1 3
8 9
1 2
5 6
2 3
3
3 4
7 10
8 9

输出样例:

Yes
No
Yes
  • 思路

    • 把每个家族看成一个集合:人之间互为亲戚,则说明他们是一个家族的,用一个编号来表示;
    • 这个题比较简单,就是并查集的两个朴素操作:
      1. 两个人互为亲戚,进行家族合并,即并查集合并
      2. 查询两个人是否为亲戚,即看看这两人的家族是否一样
  • 代码实现

    #include<bits/stdc++.h>
    using namespace std;const int N=200010;int n,m;   //n表示人数,m表示操作的次数
    int p[N];int find(int x)  //找到家族编号,即根节点
    {if(p[x]!=x) p[x]=find(p[x]);return p[x];
    }int main()
    {scanf("%d%d",&n,&m);for(int i=1;i<=n;i++)  p[i]=i; //初始化父节点while(m--){   //m次合并操作,亲戚互认int a,b;scanf("%d%d",&a,&b);if(find(a)!=find(b))  p[find(a)]=find(b);   //家族集合合并}int q;cin>>q;while(q--){  //q次查询,是否是亲戚,一个家族集合的int x,y;scanf("%d%d",&x,&y);if(find(x)==find(y))  puts("Yes");   else puts("No");}return 0;
    }
    

2.合并集合

一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。

现在要进行 m 个操作,操作共有两种:

  1. M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
  2. Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中;

输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 M a bQ a b 中的一种。

输出格式

对于每个询问指令 Q a b,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes,否则输出 No

每个结果占一行。

数据范围

1≤n,m≤10510^5105

输入样例:

4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4

输出样例:

Yes
No
Yes
  • 代码实现

    #include<bits/stdc++.h>
    using namespace std;const int N=100010;int n,m; //n表示点的数量,m表示操作的次数
    int p[N];  //存的每个节点的父节点int find(int x) //返回x的祖宗节点+路径压缩
    {if(p[x]!=x)  p[x]=find(p[x]);return p[x];
    }int main()
    {scanf("%d%d",&n,&m);for(int i=1;i<=n;i++) p[i]=i; //最开始,每个点都各自在一个集合中,so父节点就是他本身;while(m--){char op[2];int a,b;scanf("%s%d %d",op,&a,&b);//合并if(op[0]=='M') p[find(a)]=p[find(b)];  //让a的祖宗节点等于b的祖宗节点,让a的祖宗节点直接插在b祖宗节点下面else{if(find(a)==find(b)) puts("Yes");  //判断是否属于同一个集合else puts("No");}  }return 0;
    }
    

注意

读入字母M或者是Q的时候,使用字符串op[2],是因为直接用char的话,可能会出现空格换行的问题作物,这种比较保险,记得在后面使用的时候,用op[0],不能直接使用op

puts自动包含换行

3.连通块中点的数量

给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。

现在要进行 m 个操作,操作共有三种:

  1. C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
  2. Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
  3. Q2 a,询问点 a 所在连通块中点的数量;

输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 C a bQ1 a bQ2 a 中的一种。

输出格式

对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No

对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量

每个结果占一行。

数据范围

1≤n,m≤10510^5105

输入样例:

5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5

输出样例:

Yes
2
3
  • 思路

    • 连通块就是一个点的集合:集合中的点可以相互到达,直接或者是间接都是可以的;

    • 这时候我们可以把它类比成一个树,运用并查集,一个点集合,我们可以用一个编号来表示,属于同一个编号,就说明两个点之间可以相互到达,在一个连通块里面;

    • 有三个操作:

      1. 两点之间连一条边,那么这两个点所在集合中的点,都是可以相互到达的,即合成一个连通块,用并查集中的合并操作;

      2. 判断是否在一个连通块,用并查集的查询;

      3. 询问一个点集合的数量,需要我们额外维护,初始化的时候每个集合1个,合并的时候,两个集合数量相加,最后输出即可

  • 代码实现

    #include<bits/stdc++.h>using namespace std;const int N=1000010;
    int n,m;
    int p[N],sizel[N];  //p表示父节点,sizel表示集合的大小,记住sizel里面放的是祖宗节点,后面容易出错int find(int n)  //返回祖宗节点
    {if(p[n]!=n) p[n]=find(p[n]);return p[n];
    }int main()
    {scanf("%d%d",&n,&m);  //读入点的数量和操作的次数for(int i=1;i<=n;i++){   //初始化,父节点就是它本身;集合大小都是1,只有他自己p[i]=i;sizel[i]=1;}char op[5];   while(m--){scanf("%s",op);  //读入操作的名字if(op[0]=='C'){   //合并int a,b;scanf("%d%d",&a,&b);if(find(a)==find(b)) continue;  //相同则进入下个循环else{   //不同即操作,两步的顺序不能反!!!sizel[find(b)]+=sizel[find(a)];  //b的集合大小加上a的集合大小p[find(a)]=find(b);   //让a的祖宗节点指向b的祖宗节点}}else if(op[1]=='1'){  //查询是否一个集合int a,b;scanf("%d%d",&a,&b);if(find(a)==find(b))  puts("Yes");else puts("No");}else{if(op[1]=='2') {   //输出集合大小int d;scanf("%d",&d);printf("%d\n",sizel[find(d)]);  }}}return 0;
    }
    

Alt

相关文章:

【蓝桥集训】第七天——并查集

作者&#xff1a;指针不指南吗 专栏&#xff1a;Acwing 蓝桥集训每日一题 &#x1f43e;或许会很慢&#xff0c;但是不可以停下来&#x1f43e; 文章目录1.亲戚2.合并集合3.连通块中点的数量有关并查集的知识学习可以移步至—— 【算法】——并查集1.亲戚 或许你并不知道&#…...

该来的总会来,继岳云鹏走红之后,孔云龙也和主流相声界打成一片

说起德云社的岳云鹏&#xff0c;都知道他是农民的孩子&#xff0c;初中没有毕业就外出打工&#xff0c;一路辛酸才走到了今天。当年岳云鹏在北京打工&#xff0c;炸酱面馆里面他和孔云龙最好&#xff0c;两个人又经过老先生介绍&#xff0c;一起投奔郭德纲学说相声。 进入德云社…...

索引的创建与设计原则

1.索引的声明与使用 1.1索引的分类 MySQL的索引包括普通索引、唯一性索引、全文索引、单列索引、多列索引和空间索引等。 从 功能逻辑 上说&#xff0c;索引主要有 4 种&#xff0c;分别是普通索引、唯一索引、主键索引、全文索引。按照 物理实现方式&#xff0c;索引可以分…...

day51【代码随想录】动态规划之回文子串、最长回文子序列

文章目录前言一、回文子串&#xff08;力扣647&#xff09;二、最长回文子序列&#xff08;力扣516&#xff09;前言 1、回文子串 2、最长回文子序列 一、回文子串&#xff08;力扣647&#xff09; 给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目…...

拟凸函数,拟凹函数,单峰函数

拟凸&#xff08;quasi-convex&#xff09;函数很早就听说过&#xff0c;但是标准定义一直不太了解&#xff0c;现在总结一下。 一个定义在凸集上的实数函数 fff 是拟凸函数&#xff1a;若对于其定义域内的任意两个点 xxx 和 yyy&#xff0c;以及任意常数 λ∈[0,1]\lambda\in…...

数据处理(伪)代码:卡尔曼滤波 vs. 卡尔曼平滑

步骤一、导入csv或txt格式的试验数据 最简洁也是据说读取速度最快的方法是&#xff1a; pPath C:\data_org\9#-1.txt % 数据文件 data importdata(pPath); % 读取 pPath 的结果到 一个数据结构变量 data 中。 pData data.data; % 提取有效数据数组data 的数据结构如下&a…...

华为OD机试题,用 Java 解【比赛评分】问题

最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...

【基础算法】哈希表(开放寻址法)

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

优化算法(寻优问题)

前言 群智能算法&#xff08;全局最优&#xff09;&#xff1a;模拟退火算法&#xff08;Simulated annealing&#xff0c;SA&#xff09;&#xff0c;遗传算法&#xff08;Genetic Algorithm, GA&#xff09;&#xff0c;粒子群算法&#xff08;Particle Swarm Optimization&…...

基于视频流⽔线的Opencv缺陷检测项⽬

代码链接见文末 1.数据与任务概述 输入为视频数据,我们需要从视频中检测出缺陷,并对缺陷进行分类。 2.整体流程 (1)视频数据读取和轮廓检测 首先,我们需要使用opencv读取视频数据,将彩色图转为灰度图后进行图像阈值处理。阈值处理是为了让前景和背景更明显的区分处理。…...

百万数据excel导出功能如何实现?

最近我做过一个MySQL百万级别数据的excel导出功能&#xff0c;已经正常上线使用了。 这个功能挺有意思的&#xff0c;里面需要注意的细节还真不少&#xff0c;现在拿出来跟大家分享一下&#xff0c;希望对你会有所帮助。 原始需求&#xff1a;用户在UI界面上点击全部导出按钮…...

华为OD机试题,用 Java 解【合规数组】问题

最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...

SAP ABAP中的数据类型 Data Types

简单来说分两种&#xff1a; 数据字典里定义的在ABAP程序里定义的 文章目录1. ABAP数据字典里的1.1 数字型的1.2 字符型1.3 字节型1.4 特殊类型2. 预定义的ABAP数据类型2.1 预定义数字型2.2 预定义字符型2.3 预定义字节型1. ABAP数据字典里的 1.1 数字型的 用在数学计算里的…...

HashMap~

HashMap&#xff1a; HashMap是面试中经常被问到的一个内容&#xff0c;以下两个经常被问到的问题&#xff0c; Question1&#xff1a;底层数据结构&#xff0c;1.7和1.8有何不同&#xff1f; 答&#xff1a;1.7数组&#xff0b;链表&#xff0c;1.8数组&#xff0b;(链表|红…...

EasyNLP集成K-Global Pointer算法,支持中文信息抽取

作者&#xff1a;周纪咏、汪诚愚、严俊冰、黄俊 导读 信息抽取的三大任务是命名实体识别、关系抽取、事件抽取。命名实体识别是指识别文本中具有特定意义的实体&#xff0c;包括人名、地名、机构名、专有名词等&#xff1b;关系抽取是指识别文本中实体之间的关系&#xff1b;…...

mysql lesson3

DQL查找语句续集.............................. 分组函数&#xff08;也叫多行处理函数&#xff09; 1&#xff1a; select sum(sal) from emp;select min(sal)from emp;select max(sal)from emp;select avg(sal)from emp;select count(ename)from emp;2&#xff1a;分组函…...

python源码保护

文章目录代码混淆打包exe编译为字节码源码加密项目发布部署时&#xff0c;为防止python源码泄漏&#xff0c;可以通过几种方式进行处理代码混淆 修改函数、变量名 打包exe 通过pyinstaller 将项目打包为exe可执行程序&#xff0c;不过容易被反编译。 编译为字节码 py_comp…...

第51讲:SQL优化之COUNT查询的优化

文章目录 1.COUNT查询优化的概念2.COUNT函数的用法1.COUNT查询优化的概念 在很多的业务场景下可能需要统计一张表中的总数据量,当表的数据量很大时,使用COUNT统计表数据量时,也是非常耗时的。 MyISAM引擎会把一个表的总行记录在磁盘中,当执行count(*)的时候会直接从磁盘中…...

ArrayBlockingQueue

同步队列超出长度时&#xff0c;不同的返回形式可以分为以下四种。 会抛异常不会抛异常&#xff0c;有返回值死等&#xff0c;直到可以插入值或者取到值设置等待超时时间添加方法add()offfer()put()offer(E e,long timeout, TimeUnit unit)删除方法remove()poll()take()poll(l…...

DeepLabV3+:对预测处理的详解

相信大家对于这一部分才是最感兴趣的&#xff0c;能够实实在在的看到效果。这里我们就只需要两个.py文件&#xff08;deeplab.py、predict_img.py&#xff09;。 创建DeeplabV3类 deeplab.py的作用是为了创建一个DeeplabV3类&#xff0c;提供一个检测图片的方法&#xff0c;而…...

【Git】与“三年经验”就差个分支操作的距离

前言 Java之父于胜军说过&#xff0c;曾经一位“三年开发经验”的程序员粉丝朋友&#xff0c;刚入职因为不会解决分支问题而被开除&#xff0c;这是不是在警示我们什么呢&#xff1f; 针对一些Git的不常用操作&#xff0c;我们通过例子来演示一遍 1.版本回退 1.1已提交但未p…...

【经验】win10设置自启动

方法一&#xff1a;自启动文件夹 按下winr快捷键&#xff0c;弹出运行窗口&#xff0c;输入&#xff1a;shell:startup&#xff0c;弹出自启动文件夹窗口&#xff0c;将要开机自启的程序或快捷方式复制到此窗口中即可。 自启动文件夹路径&#xff1a;C:\Users\【用户名】\Ap…...

Linux SPI-NAND 驱动开发指南

文章目录Linux SPI-NAND 驱动开发指南1 概述1.1 编写目的1.2 适用范围1.3 相关人员3 流程设计3.1 体系结构3.2 源码结构3.3 关键数据定义3.3.1 flash 设备信息数据结构3.3.2 flash chip 数据结构3.3.3 aw_spinand_chip_request3.3.4 ubi_ec_hdr3.3.5 ubi_vid_hdr3.4 关键接口说…...

【THREE.JS学习(3)】使用THREEJS加载GeoJSON地图数据

本文接着系列文章&#xff08;2&#xff09;进行介绍&#xff0c;以VUE2为开发框架&#xff0c;该文涉及代码存放在HelloWorld.vue中。相较于上一篇文章对div命名class等&#xff0c;该文简洁许多。<template> <div></div> </template>接着引入核心库i…...

在windows搭建Redis集群并整合入Springboot项目

搭建集群配置规划Redis集群编写bat来启动每个redis服务安装Ruby安装Redis的Ruby驱动出现错误镜像过期SSL证书过期安装集群脚本redis-trib启动每个节点并执行集群构建脚本测试搭建是否成功配置springboot项目中配置规划Redis集群 我们搭建三个节点的集群&#xff0c;每个节点有…...

C++【内存管理】

文章目录C内存管理一、C/C内存分布1.1.C/C内存区域划分图解&#xff1a;1.2.根据代码进行内存区域分析二、C内存管理方式2.1.new/delete操作内置类型2.2.new和delete操作自定义类型三、operator new与operator delete函数四、new和delete的实现原理4.1.内置类型4.2.自定义类型4…...

Spring Cloud Nacos源码讲解(六)- Nacos客户端服务发现

Nacos客户端服务发现源码分析 总体流程 首先我们先通过一个图来直观的看一下&#xff0c;Nacos客户端的服务发现&#xff0c;其实就是封装参数、调用服务接口、获得返回实例列表。 ​ 但是如果我们要是细化这个流程&#xff0c;会发现不仅包括了通过NamingService获取服务列表…...

华为OD机试题,用 Java 解【计算最大乘积】问题

最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...

蓝牙运动耳机哪个好,比较好的运动蓝牙耳机

很多想选择蓝牙运动耳机的朋友都不知道应该如何选择&#xff0c;运动首先需要注意的就是耳机的防水能力以及耳机佩戴舒适度&#xff0c;在运动当中会排出大量的汗水&#xff0c;耳机防水等级做到越高&#xff0c;可以更好地保护耳机不受汗水浸湿&#xff0c;下面就分享五款适合…...

苹果设计可变色Apple Watch表带,智能穿戴玩法多

苹果最新技术专利显示&#xff0c;苹果正在为 Apple Watch 设计一款可变色的表带&#xff0c;可以根据佩戴者所穿着的服装、所在的环境等自动改变颜色。据介绍&#xff0c;这款表带里的灯丝具有电致变色功能&#xff0c;可以通过施加不同的电压&#xff0c;来实现显示多种颜色或…...