鸡群优化(CSO)算法(含MATLAB代码)
先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年提出的新型智能优化算法,并附MATLAB代码。

鸡是一种群居性的动物,鸡群之间通过合作探索食物,群体中有领导地位的鸡是比较有优势的,它们可以第一时间获得食物,这种行为叫做等级制度。等级制度在鸡的社会生活中起着重要的作用,鸡群中的具有较强觅食行为的公鸡占优势,在雄鸡的周围有更多的母鸡和小鸡,鸡群在觅食的过程中,这种等级制度会不断的更新。Meng等人在2014年根据鸡群的等级制度和搜索食物行为提出了鸡群优化(Chicken Swarm Optimization, CSO)算法。它的原始参考文献如下:
“Meng X, Liu Y, Gao X, et al. A new bio-inspired algorithm: chicken swarm optimization[C]//Advances in Swarm Intelligence: 5th International Conference, ICSI 2014, Hefei, China, October 17-20, 2014, Proceedings, Part I 5. Springer International Publishing, 2014: 86-94.”
01
遵循规则
鸡群优化算法遵循如下规则:
1)将整个鸡群分成若干子群,每个子群都由一只公鸡,若干只母鸡和小鸡组成,即子群的个数由公鸡的个数决定。
2)按照每只鸡适应度值的大小将种群分为公鸡、母鸡和小鸡,其中适应度较好的为公鸡,适应度较差的为小鸡,其余的为母鸡。
3)公鸡、母鸡、小鸡三者之间的等级制度一旦确立将数代保持不变,等级制度每隔G(G∈[2,20])代更新一次。
4)每个组内母鸡跟随该组的公鸡觅食,也可随机偷取其他组内食物;每组内小鸡跟随妈妈母鸡进行觅食。
5)每一只鸡的位置都对应优化问题的一个解。假设在一个种群里有N个个体,公鸡的数量为NR,母鸡的数量为NH,小鸡的数量为NC,妈妈母鸡的数量为NM。妈妈母鸡是从母鸡中随机选取,每个母鸡妈妈有若干个孩子小鸡。
6)在鸡群中,不同等级的鸡的位置迭代方式有所不同。
02
算法设计

03
计算流程

04
实验仿真
将CSO算法用于函数寻优,算法的MATLAB程序是严格按照它的原始参考文献进行编码的。利用CEC2005测试集验证CSO的性能,这里选择2022年提出的金豺优化(GJO)算法进行效果对比(为了实验的公平性,两种算法的种群大小设置为50,最大迭代次数为500)。这里仅对仿真结果进行简要展示,不再进一步分析。
对比结果如下所示:
CSO Vs GJO
在个别函数上收敛曲线不见了,是因为已经收敛到理论最优值0了。我使用的是semilogy来绘制的收敛曲线,而semilogy画的是y轴的对数,因此,若曲线收敛到0,semilogy是画不出来的。
05
MATLAB代码
CSO算法对应的MATLAB代码链接如下:
| CSO跑CEC2005测试集 | 公众号里有链接 |
| CSO跑CEC2013测试集 | 公众号里有链接 |
| CSO跑CEC2014测试集 | 公众号里有链接 |
| CSO跑CEC2017测试集 | 公众号里有链接 |
| CSO跑CEC2020优化函数测试集 | 公众号里有链接 |
| CSO跑CEC2022优化函数测试集 | 公众号里有链接 |
| CSO的勘探(Exploration)和开发(Exploitation)占比分析 | 公众号里有链接 |
| CSO的工程应用(第1期):压力容器设计、滚动轴承设计、拉伸/压缩弹簧设计、悬臂梁设计、轮系设计、三杆桁架设计 | 公众号里有链接 |
| CSO的工程应用(第2期):焊接梁设计、多盘离合器制动器设计问题、步进圆锥滑轮问题、减速机设计问题、行星轮系设计优化问题、机器人夹持器问题 | 公众号里有链接 |
可通过下方链接下载代码清单,在里面寻找需要的算法代码,然后去对应的链接获取。清单会同步更新,一旦有新的代码,就可以在清单里找到。清单里面有部分代码是开源获取的。可随时免费下载。
链接:https://pan.baidu.com/s/1n2vpbwuhpA8oyXSJGsAsmA
提取码:8023
相关文章:
鸡群优化(CSO)算法(含MATLAB代码)
先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年…...
3. 安装lombok maven镜像设置
安装lombok & maven镜像设置 一、maven镜像设置 Maven:负责进行项目管理、依赖工具管理的 软件。 快捷解决方案: 1.方法一 直接配置系统默认的文件 各个人因为登录的用户名不同,所以目录名不同。 2.方法二 自定义本地仓库的位置 完成之后重新打…...
详谈Spring
作者:爱塔居 专栏:JavaEE 目录 一、Spring是什么? 1.1 Spring框架的一些核心特点: 二、IoC(控制反转)是什么? 2.1 实现手段 2.2 依赖注入(DI)的实现原理 2.3 优点 三、AO…...
PyTorch入门之【AlexNet】
参考文献:https://www.bilibili.com/video/BV1DP411C7Bw/?spm_id_from333.999.0.0&vd_source98d31d5c9db8c0021988f2c2c25a9620 AlexNet 是一个经典的卷积神经网络模型,用于图像分类任务。 目录 大纲dataloadermodeltraintest 大纲 各个文件的作用&…...
(六)正点原子STM32MP135移植——内核移植
目录 一、概述 二、编译官方代码 三、移植 四、编译 一、概述 前面已经移植好了TF-A、optee、u-boot,在u-boot能正常跑起来的情况下,现在来移植内核。 二、编译官方代码 进入kernel目录 2.1 解压源码、打补丁 /* 解压源码 */ tar xf linux-6.1.28.…...
自媒体工作内容管理助手
内容助手 访问地址:editor.yunwow.cn 背景介绍 最近在学习流量运营, 流量运营的第一站是内容创作, 我试过不少原创内容,都是跟生活相关的例如:录一段联琴的视频、录一段秋天的风景、写一段生活感悟、发一段小宠物的生…...
Echarts 教程一
Echarts 教程一 可视化大屏幕适配方案可视化大屏幕布局方案Echart 图表通用配置部分解决方案1. titile2. tooltip3. xAxis / yAxis 常用配置4. legend5. grid6. series7.color Echarts API 使用全局echarts对象echarts实例对象 可视化大屏幕适配方案 rem flexible.js 关于flex…...
【Kubernetes】Kubernetes 对象是什么?
什么是 Kubernetes 对象?常见的 Kubernetes 对象参考🔎感谢 💖 什么是 Kubernetes 对象? Kubernetes 对象是持久化的实体,用于描述整个集群的状态和配置。它们是在 etcd 等持久化存储中存储的,因此它们的状…...
【C++设计模式之模板模式】分析及示例
C之模板模式 描述实现原理示例步骤1步骤1 分析步骤2步骤2 分析调用输出结果 结论 描述 模板模式(Template Pattern)是设计模式中的一种行为型模式。 该模式定义一个操作中的算法骨架,而将具体的算法实现延迟到子类中。 模板模式使得子类可以…...
C#捕捉全局异常
1.运行图片 2.源码 using System; using System.Collections.Generic; using System.Linq; using System.Threading.Tasks; using System.Windows.Forms;namespace 捕捉全局异常 {internal static class Program{/// <summary>/// 应用程序的主入口点。/// </summary…...
java.text.ParseException: Unparseable date: “2023-09-06T09:08:18“
问题描述: java.text.ParseException: Unparseable date: “2023-09-06T09:08:18” 这是在String类型转Date类型出现的错误,主要是String类型时间中间有一个T在转换的过程出现问题. 解决方法: SimpleDateFormat simpleDateFormat new SimpleDateFormat…...
macOS 下如何优雅的使用 Burp Suite 汉化
转载 https://www.sqlsec.com/2019/11/macbp.html 主要内容是根据上面的来的 下面总结个人出现错误的地方 主要是优雅配置方面 不要直接复制粘贴 看清楚人家的内容 下面的可以直接复制粘贴 --add-opensjava.desktop/javax.swingALL-UNNAMED --add-opensjava.base/java.lang…...
进程同步与进程互斥
1.进程同步 知识点回顾: 进程具有异步性的特征。 异步性是指,各并发执行的进程以各自独立的、不可预知的速度向前推进。 如何解决这种异步问题,就是“进程同步”所讨论的内容。 同步亦称直接制约关系,它是指为完成某种任务而建立的两个或多…...
公司安防工程简要介绍及系统需求分析
多年来 从事安保监控领域的经验,在系统的功能要求、设备选型、施 工控制、 后期维护、人员配备等各方面反复论证,最终形成了本方案。在系统 的硬件选择上,把系统的稳定性、安全性、可靠性放在第一位。根据 招标文件的要求选用当今安防行业具…...
JMETER自适应高分辨率的显示器
系列文章目录 历史文章 每天15分钟JMeter入门篇(一):Hello JMeter 每天15分钟JMeter入门篇(二):使用JMeter实现并发测试 每天15分钟JMeter入门篇(三):认识JMeter的逻辑控…...
Linux工具(三)
继Linux工具(一)和Linux工具(二),下面我们就来讲解Linux最后的两个工具,分别是代码托管的版本控制器git和代码调试器gdb。 目录 1.git-版本控制器 从0到1的实现git代码托管 检测并安装git 新建git仓库…...
基于SSM+Vue的鲜花销售系统设计与实现
末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用Vue技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…...
矢量图形编辑软件illustrator 2023 mac特点介绍
illustrator 2023 mac是一款矢量图形编辑软件,用于创建和编辑排版、图标、标志、插图和其他类型的矢量图形。 illustrator mac软件特点 矢量图形:illustrator创建的图形是矢量图形,可以无限放大而不失真,这与像素图形编辑软件&am…...
【计算机网络面试题(62道)】
文章目录 计算机网络面试题(62道)基础1.**说下计算机网络体系结构2.说一下每一层对应的网络协议有哪些?3.那么数据在各层之间是怎么传输的呢? 网络综合4.**从浏览器地址栏输入 url 到显示主页的过程?5.说说 DNS 的解析…...
JVM-满老师
JVM 前言程序计数器,栈,虚拟机栈:本地方法栈:堆,方法区:堆内存溢出方法区运行时常量池 垃圾回收垃圾回收算法分代回收 前言 JVM 可以理解的代码就叫做字节码(即扩展名为 .class 的文件ÿ…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用
阻止除自定义标签之外的所有标签 先输入一些标签测试,说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时(如通过点击或键盘导航&…...
