机器学习必修课 - 使用管道 Pipeline
目标:学习使用管道(pipeline)来提高机器学习代码的效率。
1. 运行环境:Google Colab
import pandas as pd
from sklearn.model_selection import train_test_split
!git clone https://github.com/JeffereyWu/Housing-prices-data.git
- 下载数据集
2. 加载房屋价格数据集,进行数据预处理,并将数据划分为训练集和验证集
# Read the data
X_full = pd.read_csv('/content/Housing-prices-data/train.csv', index_col='Id')
X_test_full = pd.read_csv('/content/Housing-prices-data/test.csv', index_col='Id')# Remove rows with missing target, separate target from predictors
X_full.dropna(axis=0, subset=['SalePrice'], inplace=True)
y = X_full.SalePrice
X_full.drop(['SalePrice'], axis=1, inplace=True)# Break off validation set from training data
X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, train_size=0.8, test_size=0.2,random_state=0)
- 使用Pandas的
read_csv函数从指定路径读取训练集和测试集的CSV文件。index_col='Id'表示将数据集中的’Id’列作为索引列。 - 从
X_full数据中删除了带有缺失目标值的行,这是因为目标值(‘SalePrice’)是我们要预测的值,所以必须确保每个样本都有一个目标值。然后,将目标值从X_full数据中分离出来,存储在变量y中,并从X_full中删除了目标值列,以便将其视为预测特征。
3. 选择具有相对低基数(唯一值数量较少)的分类(categorical)列
# "Cardinality" means the number of unique values in a column
# Select categorical columns with relatively low cardinality (convenient but arbitrary)
categorical_cols = [cname for cname in X_train_full.columns ifX_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == "object"]
- 识别具有相对较少不同类别的分类列,因为这些列更适合进行独热编码,而不会引入太多的新特征。
4. 选择数值型(numerical)列
# Select numerical columns
numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']]
- 识别数据集中包含数值数据的列,因为这些列通常用于构建数值特征,并且需要用于训练和评估数值型机器学习模型。
5. 将数据集中的列限制在所选的分类(categorical)列和数值(numerical)列上
# Keep selected columns only
my_cols = categorical_cols + numerical_cols
X_train = X_train_full[my_cols].copy()
X_valid = X_valid_full[my_cols].copy()
X_test = X_test_full[my_cols].copy()
- 创建了一个名为my_cols的列表,其中包含了要保留的列名
- 使用
X_train_full[my_cols].copy()和X_valid_full[my_cols].copy()从原始训练数据集(X_train_full和X_valid_full)中创建了新的数据集(X_train和X_valid)。这两个数据集只包含了my_cols中列名所对应的列,其他列被丢弃了。最后,同样的操作也被应用到测试数据集上,创建了包含相同列的测试数据集X_test。
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
6. 准备数值型数据和分类型数据以供机器学习模型使用
# Preprocessing for numerical data
numerical_transformer = SimpleImputer(strategy='constant')# Preprocessing for categorical data
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')),('onehot', OneHotEncoder(handle_unknown='ignore'))
])# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(transformers=[('num', numerical_transformer, numerical_cols),('cat', categorical_transformer, categorical_cols)])
- 创建了一个名为
numerical_transformer的预处理器,用于处理数值型数据。在这里,使用了SimpleImputer,并设置了策略为’constant’,表示将缺失的数值数据填充为一个常数值。 - 使用
SimpleImputer来填充缺失值,策略为’most_frequent’,表示使用出现频率最高的值来填充缺失的分类数据。 - 使用
OneHotEncoder来执行独热编码,将分类数据转换成二进制的形式,并且设置了handle_unknown='ignore',以处理在转换过程中遇到未知的分类值。 - 使用
ColumnTransformer来组合数值型和分类型数据的预处理器,将它们一起构建成一个整体的预处理过程。
7. 建立、训练和评估一个随机森林回归模型
# Define model
model = RandomForestRegressor(n_estimators=100, random_state=0)# Bundle preprocessing and modeling code in a pipeline
clf = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# Preprocessing of training data, fit model
clf.fit(X_train, y_train)# Preprocessing of validation data, get predictions
preds = clf.predict(X_valid)print('MAE:', mean_absolute_error(y_valid, preds))
- 创建了一个名为
model的机器学习模型。在这里,使用了随机森林回归模型,它是一个基于决策树的集成学习模型,包含了100颗决策树,并设置了随机种子random_state为0,以确保结果的可重复性。 - 创建了一个名为clf的机器学习管道(
Pipeline)。管道将数据预处理步骤(preprocessor)和模型训练步骤(model)捆绑在一起,确保数据首先被预处理,然后再用于模型训练。 - MAE是一种衡量模型预测误差的指标,其值越小表示模型的性能越好。
MAE: 17861.780102739725
8. 重新进行数据预处理和定义一个机器学习模型
# Preprocessing for numerical data
numerical_transformer = SimpleImputer(strategy='constant')# Preprocessing for categorical data
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant')),('onehot', OneHotEncoder(handle_unknown='ignore'))
])# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(transformers=[('num', numerical_transformer, numerical_cols),('cat', categorical_transformer, categorical_cols)])# Define model
model = RandomForestRegressor(n_estimators=100, random_state=0)
- 使用
SimpleImputer来填充分类型数据中的缺失值,策略改为’constant’,改用常数值填充。
# Bundle preprocessing and modeling code in a pipeline
my_pipeline = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# Preprocessing of training data, fit model
my_pipeline.fit(X_train, y_train)# Preprocessing of validation data, get predictions
preds = my_pipeline.predict(X_valid)# Evaluate the model
score = mean_absolute_error(y_valid, preds)
print('MAE:', score)
MAE: 17621.3197260274
9. 再一次进行数据预处理和定义一个机器学习模型
# 自定义数值型数据的预处理步骤
numerical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='mean')), # 可以使用均值填充缺失值
])# 自定义分类型数据的预处理步骤
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), # 使用最频繁的值填充缺失值('onehot', OneHotEncoder(handle_unknown='ignore')) # 执行独热编码
])# 定义自己的模型
model = RandomForestRegressor(n_estimators=200, random_state=42) # 增加决策树数量,设置随机种子# 将自定义的预处理和模型捆绑在一起
clf = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# 预处理训练数据,训练模型
clf.fit(X_train, y_train)# 预处理验证数据,获取预测结果
preds = clf.predict(X_valid)print('MAE:', mean_absolute_error(y_valid, preds))
MAE: 17468.0611130137
# Preprocessing of test data, fit model
preds_test = clf.predict(X_test)
# Save test predictions to file
output = pd.DataFrame({'Id': X_test.index,'SalePrice': preds_test})
output.to_csv('submission.csv', index=False)
相关文章:
机器学习必修课 - 使用管道 Pipeline
目标:学习使用管道(pipeline)来提高机器学习代码的效率。 1. 运行环境:Google Colab import pandas as pd from sklearn.model_selection import train_test_split!git clone https://github.com/JeffereyWu/Housing-prices-dat…...
WEB各类常用测试工具
一、单元测试/测试运行器 1、Jest 知名的 Java 单元测试工具,由 Facebook 开源,开箱即用。它在最基础层面被设计用于快速、简单地编写地道的 Java 测试,能自动模拟 require() 返回的 CommonJS 模块,并提供了包括内置的测试环境 …...
Naive UI 文档地址
最近几天官网访问不了,自己用github pages 部署了个 官网 github pages...
在CentOS7系统中安装MySQL5.7
第一步:下载MySQL包 > wget http://repo.mysql.com/mysql57-community-release-el7-10.noarch.rpm第二步:安装MySQL源 > rpm -Uvh mysql57-community-release-el7-10.noarch.rpm第三步:安装MySQL服务端 > yum install -y mysql-c…...
R语言通过接口获取网上数据平台的免费数据
大家好,我是带我去滑雪! 作为一名统计学专业的学生,时常和数据打交道,我深知数据的重要性。数据是实证研究的重要基础,每当在完成一篇科研论文中的实证研究部分时,我都能深刻体会实证研究最复杂、最耗时的工…...
【Docker内容大集合】Docker从认识到实践再到底层原理大汇总
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总https://blog.csdn.net/yu_cblog/categ…...
算法题:摆动序列
这道题是一道贪心算法题,如果前两个数是递增,则后面要递减,如果不符合则往后遍历,直到找到符合的。(完整题目附在了最后) 代码如下: class Solution(object):def wiggleMaxLength(self, nums):…...
复习 --- QT服务器客户端
服务器: 头文件: #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QTcpServer> #include<QTcpSocket> #include<QMessageBox> #include<QDebug> #include<QList> #include<QListWidget> #in…...
Godot 官方2D游戏笔记(1):导入动画资源和添加节点
前言 Godot 官方给了我们2D游戏和3D游戏的案例,不过如果是独立开发者只用考虑2D游戏就可以了,因为2D游戏纯粹,我们只需要关注游戏的玩法即可。2D游戏的美术素材简单,交互逻辑简单,我们可以把更多的时间放在游戏的玩法…...
leetcode 热题 100
数组和字符串匹配 子串和子序列 原串:“abcabc” 子串:“abc”, 连续但不大于原串的字符串 子序列:“acc”, 字符来自原串且保持在原串中顺序不变的字符串 子排列: “aabbcc”, 字符来自原串且只能用1次,但可有不同排列顺序的字…...
Ae 效果:CC Lens
扭曲/CC Lens Distort/CC Lens CC Lens (CC 镜头)主要用于添加或移除摄像机镜头扭曲,比如桶形失真 Barrel、枕形失真 Pincushion以及鱼眼失真 Fisheye等。或者,用它来创建一些特殊的动画效果。 ◆ ◆ ◆ 效果属性说明 Center 中…...
【Redis】基础数据结构-quicklist
Redis List 在Redis3.2版之前,Redis使用压缩列表和双向链表作为List的底层实现。当元素个数比较少并且元素长度比较小时,Redis使用压缩列表实现,否则Redis使用双向链表实现。 ziplist存在问题 不能保存过多的元素,否则查找复杂度…...
QT 实现服务器客户端搭建
1. 服务器头文件 #ifndef SER_H #define SER_H#include <QWidget> #include<QTcpServer> //服务器头文件 #include<QTcpSocket> //客户端头文件 #include<QMessageBox> //消息对话框 #include<QList> //链表头文件QT_BEGIN_NAM…...
Javascript - 轮播图
轮播图也称banner图、广告图、焦点图、滑片。是指在一个模块或者窗口,通过鼠标点击或手指滑动后,可以看到多张图片。这些图片统称为轮播图,这个模块叫做轮播模块。可以通过运用 javascript去实现定时自动转换图片。以下通过一个小Demo演示如何运用Javascript实现。 <!DOCTYP…...
MATLAB中syms函数使用
目录 语法 说明 示例 创建符号标量变量 创建符号标量变量的向量 创建符号标量变量矩阵 管理符号标量变量的假设 创建和评估符号函数 syms函数的作用是创建符号标量和函数,以及矩阵变量和函数。 语法 syms var1 ... varN syms var1 ... varN [n1 ... nM] …...
竞赛选题 深度学习 opencv python 实现中国交通标志识别_1
文章目录 0 前言1 yolov5实现中国交通标志检测2.算法原理2.1 算法简介2.2网络架构2.3 关键代码 3 数据集处理3.1 VOC格式介绍3.2 将中国交通标志检测数据集CCTSDB数据转换成VOC数据格式3.3 手动标注数据集 4 模型训练5 实现效果5.1 视频效果 6 最后 0 前言 🔥 优质…...
Qt 关于mouseTracking鼠标追踪和tabletTracking平板追踪的几点官方说明
mouseTracking属性用于保存是否启用鼠标跟踪,缺省情况是不启用的。 没启用的情况下,对应部件只接收在鼠标移动同时至少一个鼠标按键按下时的鼠标移动事件。 启用鼠标跟踪的情况下,任何鼠标移动事件部件都会接收。 部件方法hasMouseTrackin…...
基于springboot的论坛网站
目录 前言 一、技术栈 二、系统功能介绍 用户信息管理 普通管理员管理 交流论坛 交流论坛评论 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了…...
分库分表理论总结
一、概述 分库分表是在面对高并发、海量数量时常见的数据库层面的解决方案。通过把数据分散到不同的数据库中,使得单一数据库的数据量变小来缓解单一数据库的性能问题,从而达到提升数据库性能的目的。比如:将电商数据库拆分为若干独立的数据…...
RK3568平台开发系列讲解(外设篇)AP3216C 三合一环境传感器驱动
🚀返回专栏总目录 文章目录 一、AP3216C 简介二、AP3216C驱动程序2.1、设备树修改2.2、驱动程序沉淀、分享、成长,让自己和他人都能有所收获!😄 📢在本篇将介绍AP3216C 三合一环境传感器的驱动。 一、AP3216C 简介 AP3216C 是由敦南科技推出的一款传感器,其支持环境光…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...
2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版
1.题目描述 2.思路 当前的元素可以重复使用。 (1)确定回溯算法函数的参数和返回值(一般是void类型) (2)因为是用递归实现的,所以我们要确定终止条件 (3)单层搜索逻辑 二…...
