当前位置: 首页 > news >正文

Kafka 高可用

正文

一、高可用的由来

1.1 为何需要Replication

  在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费,这与Kafka数据持久性及Delivery Guarantee的设计目标相悖。同时Producer都不能再将数据存于这些Partition中。

  如果Producer使用同步模式则Producer会在尝试重新发送message.send.max.retries(默认值为3)次后抛出Exception,用户可以选择停止发送后续数据也可选择继续选择发送。而前者会造成数据的阻塞,后者会造成本应发往该Broker的数据的丢失。

  如果Producer使用异步模式,则Producer会尝试重新发送message.send.max.retries(默认值为3)次后记录该异常并继续发送后续数据,这会造成数据丢失并且用户只能通过日志发现该问题。同时,Kafka的Producer并未对异步模式提供callback接口。

  由此可见,在没有Replication的情况下,一旦某机器宕机或者某个Broker停止工作则会造成整个系统的可用性降低。随着集群规模的增加,整个集群中出现该类异常的几率大大增加,因此对于生产系统而言Replication机制的引入非常重要。

1.2 Leader Election

  引入Replication之后,同一个Partition可能会有多个Replica,而这时需要在这些Replication之间选出一个Leader,Producer和Consumer只与这个Leader交互,其它Replica作为Follower从Leader中复制数据。

  因为需要保证同一个Partition的多个Replica之间的数据一致性(其中一个宕机后其它Replica必须要能继续服务并且即不能造成数据重复也不能造成数据丢失)。如果没有一个Leader,所有Replica都可同时读/写数据,那就需要保证多个Replica之间互相(N×N条通路)同步数据,数据的一致性和有序性非常难保证,大大增加了Replication实现的复杂性,同时也增加了出现异常的几率。而引入Leader后,只有Leader负责数据读写,Follower只向Leader顺序Fetch数据(N条通路),系统更加简单且高效。

二、Kafka HA设计解析

2.1 如何将所有Replica均匀分布到整个集群

为了更好的做负载均衡,Kafka尽量将所有的Partition均匀分配到整个集群上。一个典型的部署方式是一个Topic的Partition数量大于Broker的数量。同时为了提高Kafka的容错能力,也需要将同一个Partition的Replica尽量分散到不同的机器。实际上,如果所有的Replica都在同一个Broker上,那一旦该Broker宕机,该Partition的所有Replica都无法工作,也就达不到HA的效果。同时,如果某个Broker宕机了,需要保证它上面的负载可以被均匀的分配到其它幸存的所有Broker上。

Kafka分配Replica的算法如下:

1.将所有Broker(假设共n个Broker)和待分配的Partition排序

2.将第i个Partition分配到第(i mod n)个Broker上

3.将第i个Partition的第j个Replica分配到第((i + j) mode n)个Broker上

2.2 Data Replication(副本策略)

Kafka的高可靠性的保障来源于其健壮的副本(replication)策略。

2.2.1 消息传递同步策略

Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少,Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader pull数据。这种方式上,Follower存储的数据顺序与Leader保持一致。Follower在收到该消息并写入其Log后,向Leader发送ACK。一旦Leader收到了ISR中的所有Replica的ACK,该消息就被认为已经commit了,Leader将增加HW并且向Producer发送ACK。

为了提高性能,每个Follower在接收到数据后就立马向Leader发送ACK,而非等到数据写入Log中。因此,对于已经commit的消息,Kafka只能保证它被存于多个Replica的内存中,而不能保证它们被持久化到磁盘中,也就不能完全保证异常发生后该条消息一定能被Consumer消费。

Consumer读消息也是从Leader读取,只有被commit过的消息才会暴露给Consumer。

Kafka Replication的数据流如下图所示:

2.2.2 ACK前需要保证有多少个备份

对于Kafka而言,定义一个Broker是否“活着”包含两个条件:

  • 一是它必须维护与ZooKeeper的session(这个通过ZooKeeper的Heartbeat机制来实现)。
  • 二是Follower必须能够及时将Leader的消息复制过来,不能“落后太多”。

Leader会跟踪与其保持同步的Replica列表,该列表称为ISR(即in-sync Replica)。如果一个Follower宕机,或者落后太多,Leader将把它从ISR中移除。这里所描述的“落后太多”指Follower复制的消息落后于Leader后的条数超过预定值(该值可在$KAFKA_HOME/config/server.properties中通过replica.lag.max.messages配置,其默认值是4000)或者Follower超过一定时间(该值可在$KAFKA_HOME/config/server.properties中通过replica.lag.time.max.ms来配置,其默认值是10000)未向Leader发送fetch请求。

Kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,完全同步复制要求所有能工作的Follower都复制完,这条消息才会被认为commit,这种复制方式极大的影响了吞吐率(高吞吐率是Kafka非常重要的一个特性)。而异步复制方式下,Follower异步的从Leader复制数据,数据只要被Leader写入log就被认为已经commit,这种情况下如果Follower都复制完都落后于Leader,而如果Leader突然宕机,则会丢失数据。而Kafka的这种使用ISR的方式则很好的均衡了确保数据不丢失以及吞吐率。Follower可以批量的从Leader复制数据,这样极大的提高复制性能(批量写磁盘),极大减少了Follower与Leader的差距。

需要说明的是,Kafka只解决fail/recover,不处理“Byzantine”(“拜占庭”)问题。一条消息只有被ISR里的所有Follower都从Leader复制过去才会被认为已提交。这样就避免了部分数据被写进了Leader,还没来得及被任何Follower复制就宕机了,而造成数据丢失(Consumer无法消费这些数据)。而对于Producer而言,它可以选择是否等待消息commit,这可以通过request.required.acks来设置。这种机制确保了只要ISR有一个或以上的Follower,一条被commit的消息就不会丢失。

2.2.3 Leader Election算法

Leader选举本质上是一个分布式锁,有两种方式实现基于ZooKeeper的分布式锁:

  • 节点名称唯一性:多个客户端创建一个节点,只有成功创建节点的客户端才能获得锁
  • 临时顺序节点:所有客户端在某个目录下创建自己的临时顺序节点,只有序号最小的才获得锁

一种非常常用的选举leader的方式是“Majority Vote”(“少数服从多数”),但Kafka并未采用这种方式。这种模式下,如果我们有2f+1个Replica(包含Leader和Follower),那在commit之前必须保证有f+1个Replica复制完消息,为了保证正确选出新的Leader,fail的Replica不能超过f个。因为在剩下的任意f+1个Replica里,至少有一个Replica包含有最新的所有消息。这种方式有个很大的优势,系统的latency只取决于最快的几个Broker,而非最慢那个。Majority Vote也有一些劣势,为了保证Leader Election的正常进行,它所能容忍的fail的follower个数比较少。如果要容忍1个follower挂掉,必须要有3个以上的Replica,如果要容忍2个Follower挂掉,必须要有5个以上的Replica。也就是说,在生产环境下为了保证较高的容错程度,必须要有大量的Replica,而大量的Replica又会在大数据量下导致性能的急剧下降。这就是这种算法更多用在ZooKeeper这种共享集群配置的系统中而很少在需要存储大量数据的系统中使用的原因。例如HDFS的HA Feature是基于majority-vote-based journal,但是它的数据存储并没有使用这种方式。

Kafka在ZooKeeper中动态维护了一个ISR(in-sync replicas),这个ISR里的所有Replica都跟上了leader,只有ISR里的成员才有被选为Leader的可能。在这种模式下,对于f+1个Replica,一个Partition能在保证不丢失已经commit的消息的前提下容忍f个Replica的失败。在大多数使用场景中,这种模式是非常有利的。事实上,为了容忍f个Replica的失败,Majority Vote和ISR在commit前需要等待的Replica数量是一样的,但是ISR需要的总的Replica的个数几乎是Majority Vote的一半。

虽然Majority Vote与ISR相比有不需等待最慢的Broker这一优势,但是Kafka作者认为Kafka可以通过Producer选择是否被commit阻塞来改善这一问题,并且节省下来的Replica和磁盘使得ISR模式仍然值得。

2.2.4 如何处理所有Replica都不工作

在ISR中至少有一个follower时,Kafka可以确保已经commit的数据不丢失,但如果某个Partition的所有Replica都宕机了,就无法保证数据不丢失了。这种情况下有两种可行的方案:

1.等待ISR中的任一个Replica“活”过来,并且选它作为Leader

2.选择第一个“活”过来的Replica(不一定是ISR中的)作为Leader

这就需要在可用性和一致性当中作出一个简单的折衷。如果一定要等待ISR中的Replica“活”过来,那不可用的时间就可能会相对较长。而且如果ISR中的所有Replica都无法“活”过来了,或者数据都丢失了,这个Partition将永远不可用。选择第一个“活”过来的Replica作为Leader,而这个Replica不是ISR中的Replica,那即使它并不保证已经包含了所有已commit的消息,它也会成为Leader而作为consumer的数据源(前文有说明,所有读写都由Leader完成)。Kafka0.8.*使用了第二种方式。根据Kafka的文档,在以后的版本中,Kafka支持用户通过配置选择这两种方式中的一种,从而根据不同的使用场景选择高可用性还是强一致性。

2.2.5 选举Leader

最简单最直观的方案是,所有Follower都在ZooKeeper上设置一个Watch,一旦Leader宕机,其对应的ephemeral znode会自动删除,此时所有Follower都尝试创建该节点,而创建成功者(ZooKeeper保证只有一个能创建成功)即是新的Leader,其它Replica即为Follower。

但是该方法会有3个问题:

1.split-brain 这是由ZooKeeper的特性引起的,虽然ZooKeeper能保证所有Watch按顺序触发,但并不能保证同一时刻所有Replica“看”到的状态是一样的,这就可能造成不同Replica的响应不一致

2.herd effect 如果宕机的那个Broker上的Partition比较多,会造成多个Watch被触发,造成集群内大量的调整

3.ZooKeeper负载过重 每个Replica都要为此在ZooKeeper上注册一个Watch,当集群规模增加到几千个Partition时ZooKeeper负载会过重。

Kafka 0.8.*的Leader Election方案解决了上述问题,它在所有broker中选出一个controller,所有Partition的Leader选举都由controller决定。controller会将Leader的改变直接通过RPC的方式(比ZooKeeper Queue的方式更高效)通知需为为此作为响应的Broker。同时controller也负责增删Topic以及Replica的重新分配。

三、HA相关ZooKeeper结构

3.1 admin

该目录下znode只有在有相关操作时才会存在,操作结束时会将其删除

/admin/reassign_partitions用于将一些Partition分配到不同的broker集合上。对于每个待重新分配的Partition,Kafka会在该znode上存储其所有的Replica和相应的Broker id。该znode由管理进程创建并且一旦重新分配成功它将会被自动移除。

3.2 broker

即/brokers/ids/[brokerId])存储“活着”的broker信息。

topic注册信息(/brokers/topics/[topic]),存储该topic的所有partition的所有replica所在的broker id,第一个replica即为preferred replica,对一个给定的partition,它在同一个broker上最多只有一个replica,因此broker id可作为replica id。

3.3 controller

/controller -> int (broker id of the controller)存储当前controller的信息

/controller_epoch -> int (epoch)直接以整数形式存储controller epoch,而非像其它znode一样以JSON字符串形式存储。

四、producer发布消息

4.1 写入方式

producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障 kafka 吞吐率)。

4.2 消息路由

producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。其路由机制为:

1、 指定了 patition,则直接使用;
2、 未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition
3、 patition 和 key 都未指定,使用轮询选出一个 patition。

4.3 写入流程

producer 写入消息序列图如下所示:

流程说明:

1、 producer 先从 zookeeper 的 "/brokers/.../state" 节点找到该 partition 的 leader 
2、 producer 将消息发送给该 leader 
3、 leader 将消息写入本地 log 
4、 followers 从 leader pull 消息,写入本地 log 后 leader 发送 ACK 
5、 leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK

五、broker保存消息

5.1 存储方式

物理上把 topic 分成一个或多个 patition(对应 server.properties 中的 num.partitions=3 配置),每个 patition 物理上对应一个文件夹(该文件夹存储该 patition 的所有消息和索引文件),如下:

5.2 存储策略

无论消息是否被消费,kafka 都会保留所有消息。有两种策略可以删除旧数据:

1、 基于时间:log.retention.hours=168 
2、 基于大小:log.retention.bytes=1073741824

六、Topic的创建和删除

6.1 创建topic

创建 topic 的序列图如下所示:

流程说明:

1、 controller 在 ZooKeeper 的 /brokers/topics 节点上注册 watcher,当 topic 被创建,则 controller 会通过 watch 得到该 topic 的 partition/replica 分配。
2、 controller从 /brokers/ids 读取当前所有可用的 broker 列表,对于 set_p 中的每一个 partition:2.1、 从分配给该 partition 的所有 replica(称为AR)中任选一个可用的 broker 作为新的 leader,并将AR设置为新的 ISR 2.2、 将新的 leader 和 ISR 写入 /brokers/topics/[topic]/partitions/[partition]/state 
3、 controller 通过 RPC 向相关的 broker 发送 LeaderAndISRRequest。

6.2 删除topic

删除 topic 的序列图如下所示:

流程说明:

1、 controller 在 zooKeeper 的 /brokers/topics 节点上注册 watcher,当 topic 被删除,则 controller 会通过 watch 得到该 topic 的 partition/replica 分配。 
2、 若 delete.topic.enable=false,结束;否则 controller 注册在 /admin/delete_topics 上的 watch 被 fire,controller 通过回调向对应的 broker 发送 StopReplicaRequest。

七、broker failover

kafka broker failover 序列图如下所示:

流程说明:

1、 controller 在 zookeeper 的 /brokers/ids/[brokerId] 节点注册 Watcher,当 broker 宕机时 zookeeper 会 fire watch
2、 controller 从 /brokers/ids 节点读取可用broker 
3、 controller决定set_p,该集合包含宕机 broker 上的所有 partition 
4、 对 set_p 中的每一个 partition 4.1、 从/brokers/topics/[topic]/partitions/[partition]/state 节点读取 ISR 4.2、 决定新 leader 4.3、 将新 leader、ISR、controller_epoch 和 leader_epoch 等信息写入 state 节点
5、 通过 RPC 向相关 broker 发送 leaderAndISRRequest 命令

八、controller failover

当 controller 宕机时会触发 controller failover。每个 broker 都会在 zookeeper 的 "/controller" 节点注册 watcher,当 controller 宕机时 zookeeper 中的临时节点消失,所有存活的 broker 收到 fire 的通知,每个 broker 都尝试创建新的 controller path,只有一个竞选成功并当选为 controller。

当新的 controller 当选时,会触发 KafkaController.onControllerFailover 方法,在该方法中完成如下操作:

1、 读取并增加 Controller Epoch。 
2、 在 reassignedPartitions Patch(/admin/reassign_partitions) 上注册 watcher。 
3、 在 preferredReplicaElection Path(/admin/preferred_replica_election) 上注册 watcher。 
4、 通过 partitionStateMachine 在 broker Topics Patch(/brokers/topics) 上注册 watcher。 
5、 若 delete.topic.enable=true(默认值是 false),则 partitionStateMachine 在 Delete Topic Patch(/admin/delete_topics) 上注册 watcher。 
6、 通过 replicaStateMachine在 Broker Ids Patch(/brokers/ids)上注册Watch。 
7、 初始化 ControllerContext 对象,设置当前所有 topic,“活”着的 broker 列表,所有 partition 的 leader 及 ISR等。 
8、 启动 replicaStateMachine 和 partitionStateMachine。 
9、 将 brokerState 状态设置为 RunningAsController。 
10、 将每个 partition 的 Leadership 信息发送给所有“活”着的 broker。 
11、 若 auto.leader.rebalance.enable=true(默认值是true),则启动 partition-rebalance 线程。 
12、 若 delete.topic.enable=true 且Delete Topic Patch(/admin/delete_topics)中有值,则删除相应的Topic。

相关文章:

Kafka 高可用

正文 一、高可用的由来 1.1 为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费,这与Kafka数据持久性及Delivery Guarantee的设计目标相悖。同时Pr…...

关于分布式操作系统

关于分布式操作系统,如果你不太理解的话,可以把它看成是传统操作系统延展。二者的区别在于,传统的操作系统都是单机系统,只能在一台计算机上运行,而分布式操作系统是多机系统,每台计算机都是系统中的一个计…...

Pytorch使用DataLoader, num_workers!=0时的内存泄露

描述一下背景,和遇到的问题: 我在做一个超大数据集的多分类,设备Ubuntu 22.04i9 13900KNvidia 409064GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。…...

chromedriver下载与安装方法

下载与安装: 1.查看Chrome浏览器版本 首先,需要检查Chrome浏览器的版本。请按照以下步骤进行: 打开Chrome浏览器。 点击浏览器右上角的菜单图标(三个垂直点)。 选择“帮助”(Help)。 在下拉菜单中选择“…...

数据库查询详解

数据库查询操作 前置:首先我们创建一个练习的数据库 /* SQLyog Professional v12.09 (64 bit) MySQL - 5.6.40-log : Database - studentsys ********************************************************************* *//*!40101 SET NAMES utf8 */;/*!40101 SET …...

c++视觉ROI 区域和ROI 区域图像叠加

ROI 区域提取和ROI 区域图像叠加 ROI 区域提取 #include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image cv::imread("1.jpg");// 检查图像是否成功加载if (image.empty()) {std::cerr << "Error: Could not read the image." …...

scrapy爬虫系列之安装及入门介绍

前面介绍了很多Selenium基于自动测试的Python爬虫程序,主要利用它的xpath语句,通过分析网页DOM树结构进行爬取内容,同时可以结合Phantomjs模拟浏览器进行鼠标或键盘操作。但是,更为广泛使用的Python爬虫框架是——Scrapy爬虫。这是一篇在Windows系统下介绍 Scrapy爬虫安装及…...

洛谷刷题:数组

好累&#xff0c;学习令我快乐 一、小鱼比可爱 题目链接&#xff1a;https://www.luogu.com.cn/problem/P1428 题目描述 人比人&#xff0c;气死人&#xff1b;鱼比鱼&#xff0c;难死鱼。小鱼最近参加了一个“比可爱”比赛&#xff0c;比的是每只鱼的可爱程度。参赛的鱼被从…...

【Linux常用命令4】系统状态监测命令---2

last&#xff1a;查看所有系统的登录记录 执行last命令时&#xff0c;它会读取/var/log目录下名称为wtmp的文件&#xff0c;并把该文件记录的登录系统或终端的用户名单全部显示出来。默认显示wtmp的记录&#xff0c;btmp能显示的更详细&#xff0c;可以显示远程登录&#xff0…...

uboot启动流程-uboot代码重定位说明二

一. uboot启动流程 本文学习 uboot 的启动流程中涉及的 uboot 代码重定位部分。 _main 函数中会调用 relocate_code 函数。 relocate_code 函数分两个部分&#xff1a; 1. 拷贝 uboot 代码部分 2. 有关 " 重定位后有关函数调用或全局变量地址的问题"的解决方法…...

<HarmonyOS第一课>ArkTS开发语言介绍——闯关习题及答案

判断题 1.循环渲染ForEach可以从数据源中迭代获取数据&#xff0c;并为每个数组项创建相应的组件。&#xff08; 对 &#xff09; 2.Link变量不能在组件内部进行初始化。&#xff08; 对 &#xff09; 单选题 1.用哪一种装饰器修饰的struct表示该结构体具有组件化能力&#…...

香橙派、树莓派、核桃派、鲁班猫安装jupyter notebook【ubuntu、Debian开发板操作类似】

文章目录 前言一、安装环境二、使用方法总结 前言 香橙派树莓派鲁班猫安装一下调试代码还是比较方便的。 一、安装环境 假设已经安装好了miniconda3。如果还没安装可以参考我另外一篇博文&#xff0c;有写怎么安装。 pip install jupyter notebook # 生成Jupyter Notebook的…...

tomcat整体架构

Tomcat介绍 Tomcat是Apache Software Foundation&#xff08;Apache软件基金会&#xff09;开发的一款开源的Java Servlet 容器。它是一种Web服务器&#xff0c;用于在服务器端运行Java Servlet和JavaServer Pages (JSP)技术。它可 以为Java Web应用程序提供运行环境&#x…...

实现协议互通:探索钡铼BL124EC的EtherCAT转Ethernet/IP功能

钡铼BL124EC是一种用于工业网络通信的网关设备&#xff0c;专门用于将EtherCAT协议转换成Ethernet/IP协议。它充当一个桥梁&#xff0c;连接了使用不同协议的设备&#xff0c;使它们能够无缝地进行通信和互操作。 具体来说&#xff0c;BL124EC通过支持EtherCAT&#xff08;以太…...

Android之App跳转其他软件

文章目录 前言一、效果图二、实现步骤1.弹框xml(自己替换图标)2.弹框utils3.两个弹框动画4.封装方便调用5.调用6.长按事件方法7.跳转步骤8.复制utils 总结 前言 最近遇到一个需求&#xff0c;就是App内大面积需要长按复制并跳转指定App&#xff0c;没办法&#xff0c;只能埋头…...

【Element UI】解决 el-dialog 弹框组件设置 custom-class 样式不生效问题

文章目录 问题描述解决方法 问题描述 <template><el-dialog class"myDialog" v-model"show" title"弹窗" custom-class"customDialog"><div>弹窗内容</div></el-dialog> </template> <script…...

前端菜鸟浅谈Web前端开发技术

Web前端开发技术按照过程遵循了由容易到困难&#xff0c;这就请求Web前端开发工作技术员方面要熟练学习基础的Web开发技术&#xff0c;关于网站性能的美化、SEO以及基础的关于服务器端方面的知识&#xff1b;另一方面还对开发人员有具体要求&#xff0c;比如能够熟练且灵敏的使…...

Springboot项目log4j与logback的Jar包冲突问题

异常信息关键词&#xff1a; SLF4J: Class path contains multiple SLF4J bindings. ERROR in ch.qos.logback.core.joran.spi.Interpreter24:14 - no applicable action for [properties], current ElementPath is [[configuration][properties]] 详细异常信息&#xff1a…...

光伏并网逆变器低电压穿越技术研究(Simulink仿真)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

命令模式,命令 Command 类对象的设计(设计模式与开发实践 P9)

文章目录 命令举例撤销C# 例子 命令 命令模式 Command 指的是一个 执行某些特定事情的指令 应用场景&#xff1a;有时需要向某些对象发送请求&#xff0c;但并不知道请求的接受者是谁&#xff0c;也不知道被请求的操作是什么。这时候命令模式就负责使发送者和接受者之间解耦 …...

jira 浏览器插件在问题列表页快速编辑问题标题

jira-issueTable-quicker 这是一个可以帮助我们在问题表格页快速编辑问题的浏览器插件 github 地址 功能介绍 jira 不可否认是一个可以帮助有效提高工作效率的工具&#xff0c;但是我们在使用 jira 时使用问题表格可以让我们看到跟多的内容而不用关注细节&#xff0c;但是目…...

2020架构真题(四十六)

、以下关于操作系统微内核架构特征的说法&#xff0c;不正确的是&#xff08;&#xff09;。 微内核的系统结构清晰&#xff0c;利于协作开发微内核代码量少&#xff0c;系统具有良好的可移植性微内核有良好的的伸缩性和扩展性微内核功能代码可以互相调用&#xff0c;性能很高…...

软件工程与计算总结(五)软件需求基础

本帖介绍软件需求涉及的诸多基本概念&#xff0c;通过对这些概念的阐述&#xff0c;剖析软件需求的来源、层次、类别、作用等重要知识~ 目录 ​编辑 一.引言 二.需求工程基础 1.简介 2.活动 3.需求获取 4.需求分析 5.需求规格说明 6.需求验证 7.需求管理 三.需求基…...

数学建模预测模型MATLAB代码大合集及皮尔逊相关性分析(无需调试、开源)

已知2010-2020数据&#xff0c;预测2021-2060数据 一、Logistic预测人口 %%logistic预测2021-2060年结果 clear;clc; X[7869.34, 8022.99, 8119.81, 8192.44, 8281.09, 8315.11, 8381.47, 8423.50, 8446.19, 8469.09, 8477.26]; nlength(X)-1; for t1:nZ(t)(X(t1)-X(t))/X(t1…...

泛型擦除是什么?

泛型擦除的主要特点包括&#xff1a; 编译时类型检查&#xff1a;在编写泛型代码时&#xff0c;编译器会对泛型类型参数进行类型检查&#xff0c;以确保类型安全。这意味着在编译时会捕获许多类型错误&#xff0c;避免了运行时类型错误。因为泛型其实只是在编译器中实现的而虚拟…...

阿里云轻量应用服务器有月流量限制吗?

阿里云轻量应用服务器限制流量吗&#xff1f;部分限制&#xff0c;2核2G3M和2核4G4M这两款轻量应用服务器不限制月流量&#xff0c;其他的轻量服务器套餐有月流量限制。 腾讯云轻量应用服务器价格便宜&#xff0c;活动页面&#xff1a;aliyunbaike.com/go/tencent 细心的同学看…...

mysql面试题25:数据库自增主键可能会遇到什么问题?应该怎么解决呢?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:数据库自增主键可能会遇到什么问题? 数据库自增主键可能遇到的问题: 冲突问题:自增主键是通过自动递增生成的唯一标识符,但在某些情况下可能会…...

学习css 伪类:has

学习抖音&#xff1a; 渡一前端提薪课 首先我们看下:has(selector)是什么 匹配包含&#xff08;相对于 selector 的 :scope&#xff09;指定选择器的元素。可以认为 selector 的前面有一个看不见的 :scope 伪类。它的强大之处是&#xff0c;可以实现父选择器和前面兄弟选择器…...

矩阵的相似性度量的常用方法

矩阵的相似性度量的常用方法 1&#xff0c;欧氏距离 欧式距离是最易于理解的一种距离计算方法&#xff0c;源自欧式空间中两点间的距离公式。 (1)二维平面上的点 a ( x 1 , y 1 ) a(x_1,y_1) a(x1​,y1​)和点 b ( x 2 , y 2 ) b(x_2,y_2) b(x2​,y2​)的欧式距离为 d ( x …...

Java之TCP,UDP综合小练习一

4. 综合练习 练习一&#xff1a;多发多收 需求&#xff1a; 客户端&#xff1a;多次发送数据 服务器&#xff1a;接收多次接收数据&#xff0c;并打印 代码示例&#xff1a; public class Client {public static void main(String[] args) throws IOException {//客户端&…...

网站模板 实验室/百度站长工具验证

简介 UIApplicationMain 大家并不陌生&#xff0c;因为在通过 XCode 建立 iOS 的 Ojective-C 工程时肯定会看到。新建的 main.m 文件长这样&#xff1a; int main(int argc, char * argv[]) {NSString* appDelegateClassName;autoreleasepool {appDelegateClassName NSStrin…...

wordpress 买主题/安卓优化神器

皮一下Git操作流程第一部分 命令行1、分支操作1. git branch 创建分支2. git checkout -b 创建并切换到新建的分支上3. git checkout 切换分支4. git branch 查看分支列表5. git branch -v 查看所有分支的最后一次操作6. git branch -vv 查看当前分支7. git brabch -b 分支名 o…...

禁止wordpress网站上传图片时自动生成三张图片方法/百度手机seo软件

AUTOSAR_EXP_PlatformDesign - 10 Persistency 【translated by sky8336, 2019.06.09, Shanghai】 10 Persistency 10.1Overview 持久性为自适应平台的应用程序和其他功能集群提供了在自适应机器的非易失性内存中存储信息的机制。数据在启动和点火周期是可获得的。持久性提…...

随州网络推广/独立站seo搜索优化

今天&#xff0c;开学了&#xff01;寒假后&#xff0c;学生们又回到校园开始新学期的学习。(资料图片)本报讯(记者 陈玉珍)在度过一个愉快短暂的寒假后&#xff0c;学生们又回到校园开始新学期的学习&#xff0c;今日&#xff0c;泉州市各中小学开学并正式上课。开学的第一天&…...

东莞网站建设图表/方象科技专注于什么领域

2019独角兽企业重金招聘Python工程师标准>>> win10安装配置nodejs 下载node 官网下载node接下来在命令提示符里&#xff08;winR&#xff09;输入node -v和npm -v&#xff0c;如图所示&#xff0c;表示安装完成。测试&#xff0c; 配置node 在nodejs文件目录下&a…...

河北邢台做wap网站/厦门人才网唯一官方网站登录入口

List:元素有序&#xff0c;元素可以重复&#xff0c;有索引。 特有的方法&#xff1a;凡是可以操作角标的方法都是该体系特有的方法。 增 void add(String item, int index); boolean addAll(int index, Collection<? extends E> c) 删 remove(int index) 改 set(in…...