【算法题】2034. 股票价格波动
插: 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。
坚持不懈,越努力越幸运,大家一起学习鸭~~~
题目:
给你一支股票价格的数据流。数据流中每一条记录包含一个 时间戳 和该时间点股票对应的 价格 。
不巧的是,由于股票市场内在的波动性,股票价格记录可能不是按时间顺序到来的。某些情况下,有的记录可能是错的。如果两个有相同时间戳的记录出现在数据流中,前一条记录视为错误记录,后出现的记录 更正 前一条错误的记录。
请你设计一个算法,实现:
更新 股票在某一时间戳的股票价格,如果有之前同一时间戳的价格,这一操作将 更正 之前的错误价格。
找到当前记录里 最新股票价格 。最新股票价格 定义为时间戳最晚的股票价格。
找到当前记录里股票的 最高价格 。
找到当前记录里股票的 最低价格 。
请你实现 StockPrice 类:
StockPrice() 初始化对象,当前无股票价格记录。
void update(int timestamp, int price) 在时间点 timestamp 更新股票价格为 price 。
int current() 返回股票 最新价格 。
int maximum() 返回股票 最高价格 。
int minimum() 返回股票 最低价格 。
示例 1:
输入:
[“StockPrice”, “update”, “update”, “current”, “maximum”, “update”, “maximum”, “update”, “minimum”]
[[], [1, 10], [2, 5], [], [], [1, 3], [], [4, 2], []]
输出:
[null, null, null, 5, 10, null, 5, null, 2]
解释:
StockPrice stockPrice = new StockPrice();
stockPrice.update(1, 10); // 时间戳为 [1] ,对应的股票价格为 [10] 。
stockPrice.update(2, 5); // 时间戳为 [1,2] ,对应的股票价格为 [10,5] 。
stockPrice.current(); // 返回 5 ,最新时间戳为 2 ,对应价格为 5 。
stockPrice.maximum(); // 返回 10 ,最高价格的时间戳为 1 ,价格为 10 。
stockPrice.update(1, 3); // 之前时间戳为 1 的价格错误,价格更新为 3 。
// 时间戳为 [1,2] ,对应股票价格为 [3,5] 。
stockPrice.maximum(); // 返回 5 ,更正后最高价格为 5 。
stockPrice.update(4, 2); // 时间戳为 [1,2,4] ,对应价格为 [3,5,2] 。
stockPrice.minimum(); // 返回 2 ,最低价格时间戳为 4 ,价格为 2 。
提示:
1 <= timestamp, price <= 10^9
update,current,maximum 和 minimum 总 调用次数不超过 10^5 。
current,maximum 和 minimum 被调用时,update 操作 至少 已经被调用过 一次 。
java代码:
class StockPrice {int maxTimestamp;HashMap<Integer, Integer> timePriceMap;TreeMap<Integer, Integer> prices;public StockPrice() {maxTimestamp = 0;timePriceMap = new HashMap<Integer, Integer>();prices = new TreeMap<Integer, Integer>();}public void update(int timestamp, int price) {maxTimestamp = Math.max(maxTimestamp, timestamp);int prevPrice = timePriceMap.getOrDefault(timestamp, 0);timePriceMap.put(timestamp, price);if (prevPrice > 0) {prices.put(prevPrice, prices.get(prevPrice) - 1);if (prices.get(prevPrice) == 0) {prices.remove(prevPrice);}}prices.put(price, prices.getOrDefault(price, 0) + 1);}public int current() {return timePriceMap.get(maxTimestamp);}public int maximum() {return prices.lastKey();}public int minimum() {return prices.firstKey();}
}相关文章:
【算法题】2034. 股票价格波动
插: 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 坚持不懈,越努力越幸运,大家一起学习鸭~~~ 题目: 给你一支股票价格的数据流。数据流…...
APSIM模型】作物模型应用案例
APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生长模拟模型之一。APSIM模型有Classic和Next Generation两个系列模型,能模拟几十种农作物、牧草和树木的土壤-植物-大气过程,被广泛应用于精细农业、水肥管理、气候变化、粮食安…...
io_uring之liburing库安装
手动编译和安装 liburing: 1.首先,从 liburing 的 GitHub 仓库中获取源代码。您可以使用以下命令克隆仓库: git clone https://github.com/axboe/liburing.git2.进入 liburing 目录: cd liburing3.运行configure ./configure …...
Python WebSocket自动化测试:构建高效接口测试框架!
为了更高效地进行WebSocket接口的自动化测试,我们可以搭建一个专门的测试框架。本文将介绍如何使用Python构建一个高效的WebSocket接口测试框架,并重点关注以下四个方面的内容:运行测试文件封装、报告和日志的封装、数据驱动测试以及测试用例…...
MySQL数据库——SQL优化(1)-介绍、插入数据、主键优化
目录 介绍 插入数据 Insert 大批量插入数据 主键优化 数据组织方式 页分裂 页合并 索引设计原则 介绍 SQL优化将分为下面几个部分进行学习: 插入数据主键优化order by优化group by优化limit优化count优化update优化 首先就先来看第一方面, 插…...
Flink---10、处理函数(基本处理函数、按键分区处理函数、窗口处理函数、应用案例TopN、侧输出流)
星光下的赶路人star的个人主页 我的敌手就是我自己,我要他美好到能使我满意的程度 文章目录 1、处理函数1.1 基本处理函数(ProcessFunction)1.1.1 处理函数的功能和使用1.1.2 ProcessFunction解析1.1.3 处理函数的分类 1.2 按键分区处理函数&…...
多种方案教你彻底解决mac npm install -g后仍然不行怎么办sudo: xxx: command not found
问题概述 某些时候我们成功执行了npm install -g xxx,但是执行完成以后,使用我们全局新安装的包依然不行,如何解决呢? 解决方案1: step1: 查看npm 全局文件安装地址 XXXCN_CXXXMD6M ~ % npm list -g …...
斐波那契数列 JS
问题: 给出一个数字,找出它是斐波那契数列中的第几个数 斐波那契数列 [1, 1, 2, 3, 5, 8, 13, ...],后一个数字是前两个数字之和 输入的数字大于等于 2 如果输入数字不存于斐波那契数列中,返回 -1 function demo(num) {//初始数据…...
IP 地址的分类
IP地址是用于标识计算机或设备在互联网上的位置的一种地址。IP地址通常根据其范围和用途分为不同的分类,主要包括以下几种: IPv4地址(Internet Protocol version 4): IPv4地址是32位二进制数,通常以点分十…...
CDN网络基础入门:CDN原理及架构
背景 互联网业务的繁荣让各类门户网站、短视频、剧集观看、在线教育等内容生态快速发展,互联网流量呈现爆发式增长,自然也面临着海量内容分发效率上的挑战,那么作为终端用户,我们获取资源的体验是否有提升呢? 答案是…...
李沐深度学习记录2:10多层感知机
一.简要知识记录 x.numel():看向量或矩阵里元素个数 A.sum():向量或矩阵求和,axis参数可对某维度求和,keepdims参数设置是否保持维度不变 A.cumsum:axis参数设置沿某一维度计算矩阵累计和x*y:向量的按元素乘法 torch.…...
Python标准库中内置装饰器@staticmethod@classmethod
装饰器是Python中强大而灵活的功能,用于修改或增强函数或方法的行为。装饰器本质上是一个函数,它接受另一个函数作为参数,并返回一个新的函数,通常用于在不修改原始函数代码的情况下添加额外的功能或行为。这种技术称为元编程&…...
MySQL8 间隙锁在11种情况下的锁持有情况分析
测试环境及相关必要知识 测试环境为mysql 8 版本 间隙锁(Gap Lock):用于锁定索引范围之间的间隙,防止其他事务在此间隙中插入新记录。间隙锁主要用于防止幻读问题。 在可重复读的隔离级别下默认打开该锁机制,解决幻…...
C# 图片按比例进行压缩
1、对图片进行压缩,保存在本地 对于一个200k的png文件按0.6的缩放比例进行压缩,压缩后的大小为20k左右 对于一个80k的jpg文件按0.6的缩放比例压缩,压缩后为13k左右 public void imageZoom(string name, Double zoomScale){Bitmap btImage …...
猜猜 JavaScript 输出:(! + [] + [] + ![]).length
一起猜 最近看到一个很有意思的题,直接来看,下面这段代码的打印结果是什么? console.log((! [] [] ![]).length) 猜猜看,你的答案是什么,打在评论区。 我的答案是 undefined,正如我的英文名 为什么呢&a…...
MTK Android12静默安装接口
该文档就是在android12系统上提供一个广播接收器,app端发送一个广播,并且带入apk的地址就可以实现安装 1、广播注册 frameworks\base\services\core\java\com\android\server\policy\PhoneWindowManager.java 首先要导入的依赖 import android.app.P…...
基于电容电流前馈与电网电压全前馈的三相LCL并网逆变器谐波抑制Simulink仿真
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Python数据攻略-Pandas与统计数据分析
统计学在数据分析中到底有多重要?在数据分析的世界里,统计学扮演着一角色。想象一下你是《三国志》游戏的数据分析师,任务是找出哪个武将最受玩家欢迎,哪些战役最具挑战性等。 你怎么做呢?这就需要统计学的力量了。 文章目录 基础统计方法描述性统计方差和标准差相关性和…...
【gcc】RtpTransportControllerSend学习笔记 1
本文是大神 https://www.cnblogs.com/ishen 的文章的学习笔记。主要是大神文章: webrtc源码分析(8)-拥塞控制(上)-码率预估 的学习笔记。大神的webrtc源码分析(8)-拥塞控制(上)-码率预估 详尽而具体,堪称神作。因为直接看大神的文章,自己啥也没记住,所以同时跟着看代码。跟…...
若依分离版-前端使用
1 执行 npm install --registryhttps://registry.npm.taobao.org,报错信息如下 npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resolving: ktg-mes-ui3.8.2 npm ERR! Found: vue2.6.12 npm ERR! node_modu…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
