计算机竞赛 题目:基于卷积神经网络的手写字符识别 - 深度学习
文章目录
- 0 前言
- 1 简介
- 2 LeNet-5 模型的介绍
- 2.1 结构解析
- 2.2 C1层
- 2.3 S2层
- S2层和C3层连接
- 2.4 F6与C5层
- 3 写数字识别算法模型的构建
- 3.1 输入层设计
- 3.2 激活函数的选取
- 3.3 卷积层设计
- 3.4 降采样层
- 3.5 输出层设计
- 4 网络模型的总体结构
- 5 部分实现代码
- 6 在线手写识别
- 7 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
基于卷积神经网络的手写字符识别
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 简介
该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。
这是学长做的深度学习demo,大家可以用于竞赛课题。
这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。
项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。
设计识别率高的算法,实现快速识别的系统。
2 LeNet-5 模型的介绍
学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:
2.1 结构解析
这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。
LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。
LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。
2.2 C1层
第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。
2.3 S2层
S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。
S2层和C3层连接
S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。
此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。
S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。
2.4 F6与C5层
F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。
卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。
3 写数字识别算法模型的构建
3.1 输入层设计
输入为28×28的矩阵,而不是向量。
3.2 激活函数的选取
Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。
3.3 卷积层设计
学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。
3.4 降采样层
学长设计的降采样层的pooling方式是max-pooling,大小为2×2。
3.5 输出层设计
输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:
4 网络模型的总体结构
5 部分实现代码
使用Python,调用TensorFlow的api完成手写数字识别的算法。
注:我的程序运行环境是:Win10,python3.。
当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。
#!/usr/bin/env python2# -*- coding: utf-8 -*-#import modulesimport numpy as npimport matplotlib.pyplot as plt#from sklearn.metrics import confusion_matriximport tensorflow as tfimport timefrom datetime import timedeltaimport mathfrom tensorflow.examples.tutorials.mnist import input_datadef new_weights(shape):return tf.Variable(tf.truncated_normal(shape,stddev=0.05))def new_biases(length):return tf.Variable(tf.constant(0.1,shape=length))def conv2d(x,W):return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')def max_pool_2x2(inputx):return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#import datadata = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2print("Size of:")print("--Training-set:\t\t{}".format(len(data.train.labels)))print("--Testing-set:\t\t{}".format(len(data.test.labels)))print("--Validation-set:\t\t{}".format(len(data.validation.labels)))data.test.cls = np.argmax(data.test.labels,axis=1) # show the real test labels: [7 2 1 ..., 4 5 6], 10000valuesx = tf.placeholder("float",shape=[None,784],name='x')x_image = tf.reshape(x,[-1,28,28,1])y_true = tf.placeholder("float",shape=[None,10],name='y_true')y_true_cls = tf.argmax(y_true,dimension=1)# Conv 1layer_conv1 = {"weights":new_weights([5,5,1,32]),"biases":new_biases([32])}h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])h_pool1 = max_pool_2x2(h_conv1)# Conv 2layer_conv2 = {"weights":new_weights([5,5,32,64]),"biases":new_biases([64])}h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])h_pool2 = max_pool_2x2(h_conv2)# Full-connected layer 1fc1_layer = {"weights":new_weights([7*7*64,1024]),"biases":new_biases([1024])}h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])# Droupout Layerkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)# Full-connected layer 2fc2_layer = {"weights":new_weights([1024,10]),"biases":new_weights([10])}# Predicted classy_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'# cost function to be optimizedcross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)# Performance Measurescorrect_prediction = tf.equal(y_pred_cls,y_true_cls)accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))with tf.Session() as sess:init = tf.global_variables_initializer()sess.run(init)train_batch_size = 50def optimize(num_iterations):total_iterations=0start_time = time.time()for i in range(total_iterations,total_iterations+num_iterations):x_batch,y_true_batch = data.train.next_batch(train_batch_size)feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}sess.run(optimizer,feed_dict=feed_dict_train_op)# Print status every 100 iterations.if i%100==0:# Calculate the accuracy on the training-set.acc = sess.run(accuracy,feed_dict=feed_dict_train)# Message for printing.msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"# Print it.print(msg.format(i+1,acc))# Update the total number of iterations performedtotal_iterations += num_iterations# Ending timeend_time = time.time()# Difference between start and end_times.time_dif = end_time-start_time# Print the time-usageprint("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))test_batch_size = 256def print_test_accuracy():# Number of images in the test-set.num_test = len(data.test.images)cls_pred = np.zeros(shape=num_test,dtype=np.int)i = 0while i < num_test:# The ending index for the next batch is denoted j.j = min(i+test_batch_size,num_test)# Get the images from the test-set between index i and jimages = data.test.images[i:j, :]# Get the associated labelslabels = data.test.labels[i:j, :]# Create a feed-dict with these images and labels.feed_dict={x:images,y_true:labels,keep_prob:1.0}# Calculate the predicted class using Tensorflow.cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)# Set the start-index for the next batch to the# end-index of the current batchi = jcls_true = data.test.clscorrect = (cls_true==cls_pred)correct_sum = correct.sum()acc = float(correct_sum) / num_test# Print the accuracymsg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"print(msg.format(acc,correct_sum,num_test))# Performance after 10000 optimization iterationsoptimize(num_iterations=10000)print_test_accuracy()savew_hl1 = layer_conv1["weights"].eval()saveb_hl1 = layer_conv1["biases"].eval()savew_hl2 = layer_conv2["weights"].eval()saveb_hl2 = layer_conv2["biases"].eval()savew_fc1 = fc1_layer["weights"].eval()saveb_fc1 = fc1_layer["biases"].eval()savew_op = fc2_layer["weights"].eval()saveb_op = fc2_layer["biases"].eval()np.save("savew_hl1.npy", savew_hl1)np.save("saveb_hl1.npy", saveb_hl1)np.save("savew_hl2.npy", savew_hl2)np.save("saveb_hl2.npy", saveb_hl2)np.save("savew_hl3.npy", savew_fc1)np.save("saveb_hl3.npy", saveb_fc1)np.save("savew_op.npy", savew_op)np.save("saveb_op.npy", saveb_op)
运行结果显示:测试集中准确率大概为99.2%。
查看混淆矩阵
6 在线手写识别
7 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
计算机竞赛 题目:基于卷积神经网络的手写字符识别 - 深度学习
文章目录 0 前言1 简介2 LeNet-5 模型的介绍2.1 结构解析2.2 C1层2.3 S2层S2层和C3层连接 2.4 F6与C5层 3 写数字识别算法模型的构建3.1 输入层设计3.2 激活函数的选取3.3 卷积层设计3.4 降采样层3.5 输出层设计 4 网络模型的总体结构5 部分实现代码6 在线手写识别7 最后 0 前言…...
关于flink重新提交任务,重复消费kafka的坑
异常现象1 按照以下方式设置backend目录和checkpoint目录,fsbackend目录有数据,checkpoint目录没数据 env.getCheckpointConfig().setCheckpointStorage(PropUtils.getValueStr(Constant.ENV_FLINK_CHECKPOINT_PATH)); env.setStateBackend(new FsStat…...
Win11右键恢复Win10老版本
Win11右键恢复Win10老版本 最近自己更新了windows11的OS,整体感觉都是不错的,但是就是每次右键菜单我都要再次点击下展开更多选项,这对追求极简主义的我,就是不爽, 手动恢复win10操作吧! 第一种:创建文件(简单快速) 1.新建一个resoreRightKey.reg文件,并在里面填入如下代码 W…...
ur机械臂30003端口socket通信踩坑(double类型数据怎么解析)
坑的由来 都知道在网络通信时要把网络字节序转化为主机字节序才行,但是c里的标准库函数ntohl默认是转换32位字节序的数据,也就是说默认是转换float类型的数据;而ur机械臂30003端口发送的是double类型的数据,没法直接用ntohl进行转…...
代理IP与Socks5代理的技术奇妙之旅
随着数字化时代的崛起,网络工程师们日益承担着维护网络稳定性和保护数据安全的重任。在这个充满挑战的世界里,代理IP与Socks5代理技术成为了他们的秘密武器,本文将带您踏上一段技术奇妙之旅,深入了解这两项技术在不同领域中的应用…...
自动化测试定位不到元素?可能是 frame 在搞鬼
很多人在用Splinter或Selenium定位页面元素的时候会遇到定位不到的问题,明明元素就在那儿,就是定位不到,这种情况很有可能是frame在搞鬼。 说白了就是网站上的网页A,又嵌入了其他网页B。你访问了网页A,在里面可以看到…...
uni-app 开发中,监听 input 键盘事件获取不到按下按键值怎么办?
uniapp 开发 H5 时,无法监听按钮键盘事件的原因以及解决方法。 问题描述: 不少 uni-app 开发者在使用 input 组件时,监听 keyup 事件时,获取不到键盘的 keyCode。编写的代码如下: <template><input keyup&…...
【juc】countdownlatch实现并发网络请求
目录 一、截图示例二、代码示例2.1 测试代码2.2 接口代码 一、截图示例 二、代码示例 2.1 测试代码 package com.learning.countdownlatch;import lombok.extern.slf4j.Slf4j; import org.springframework.web.client.RestTemplate;import java.util.Arrays; import java.uti…...
在供应链管理中,如何做好库存分析?库存分析有哪些监控指标?
在供应链管理中,库存分析是其重要的一环。库存分析的方法繁杂且广泛,选择正确的方法才能更好的进行库存分析,下面就为大家盘点一些常用的库存分析方法和监控指标,全程干货,建议收藏! 01 如何进行库存分析&…...
黑豹程序员-架构师学习路线图-百科:Database数据库
文章目录 1、什么是Database2、发展历史3、数据库排行网4、总结 1、什么是Database 当今世界是一个充满着数据的互联网世界,各处都充斥着大量的数据。即这个互联网世界就是数据世界。 支撑这个数据世界的基石就是数据库,数据库也可以称为数据的仓库。 …...
你相信光吗?黑灯工厂重新相信“光”
你知道“黑灯工厂”吗?望文生义,所谓黑灯工厂,就是可以不需要照明的工厂。全程流水线自动化生产,无人干预、无人值守,工厂变成黑匣子,原材料进去,成品出来,流水线上百分百自动化。 完…...
Ubuntu 20.04使用源码安装nginx 1.14.0
nginx安装及使用(详细版)是一篇参考博文。 http://nginx.org/download/可以选择下载源码的版本。 sudo wget http://nginx.org/download/nginx-1.14.0.tar.gz下载源代码。 sudo tar xzf nginx-1.14.0.tar.gz进行解压。 cd nginx-1.14.0进入到源代码…...
springboot框架拦截器中HttpServletRequest 请求如何区分是图片上传流还是普通的字符流?
在Spring Boot框架中的拦截器(Interceptor)中,可以通过检查Content-Type请求头来区分图片上传流和普通的字符流。 当客户端发送POST请求并携带文件时,Content-Type请求头通常会包含multipart/form-data或者类似的值。这表明该请求…...
简单聊聊 TCP 协议
简单聊聊 TCP 协议 如何实现可靠传输 ?完全可靠存在比特差错存在丢包流水线可靠数据传输协议回退N步 (GBN)选择重传 (ARQ) 小结 TCPTCP 连接报文段结构序号和确认号 可靠数据传输避免重传超时时间加倍快速重传回退N步还是选择重传 流量控制连接管理拥塞控制拥塞原因拥塞控制方…...
钡铼BL124PN:简单快速转换Profinet到Ethernet/IP
钡铼技术BL124PN是一款高性能的Profinet转Ethernet/IP网关设备。该网关专为工业自动化领域设计,用于实现不同协议之间的互连和通信。BL124PN采用可靠稳定的硬件和先进的通信技术,具有以下主要特点: 协议转换能力:BL124PN能够将Pr…...
【golang】go 空结构体 详解 空结构体内容占用及大小
一、空结构体基础 空结构实例 和 空结构体变量 本质是一样的 1、所有空结构体地址都是一样的2、大小都为0(最独特的) package mainimport ("fmt""time""unsafe" )type EST struct { }func main() {// 一、基础// 空结构…...
身为产品经理该如何向客户推广API商品数据接口
在当今数字化的时代,API(Application Programming Interface,应用程序编程接口)已成为各种软件应用程序之间交互数据的主要方式。API商品数据接口作为一种特殊类型的API,能够让不同的系统之间共享商品数据,…...
【数据结构】460. LFU 缓存
460. LFU 缓存 解题思路 get操作 返回key对应的val 然后增加对应的freq插入操作 如果key已经存在 直接进行更新 如果不存在 但是容器已经满了 直接进行删除freq最小的Key 之后进行插入 class LFUCache {// key到 val的映射 KVHashMap<Integer,Integer> keyToVal;// …...
文字转语音播报模块(一):阿里云nls服务使用示例
一、业务场景 最近笔者在业务中涉及到语音告警的模块,需要讲告警内容以文件或流形式返回给前端进行语音播报,具体的分析与处理如下 二、业务分析 首先告警内容提示信息这里做的处理是通过专门字段去存储、编辑,根据拟定好的代码逻辑判断是…...
Vscode配置C#编程环境(win10)
目录 1、安装好Vscode 2、下载安装.NetCore SDK 3、配置C#环境 3.1 打开Vscode并下载扩展 3.2 Vscode中打开文件夹并配置环境 3.3 调试运行 1、安装好Vscode 2、下载安装.NetCore SDK 官网如下,下载完成后双击打开一路走到底就行.NetCore SDK官网 软件显示安…...
python:xlrd 读取 Excel文件,显示在 tkinterTable 表格中
pip install xlrd xlrd-1.2.0-py2.py3-none-any.whl (103 kB) 摘要: Library for developers to extract data from Microsoft Excel (tm) spreadsheet files pip install tkinterTable tkintertable-1.3.3.tar.gz (58 kB) 摘要: Extendable table class for Tkinter 源代…...
深度学习——深度学习计算一
深度学习——深度学习计算一 文章目录 前言一、层和块1.1. 自定义块1.2. 顺序块1.3. 在前向传播函数中执行代码1.4. 小结 二、参数管理2.1. 参数访问2.1.1. 目标参数2.1.2. 一次性访问所有参数2.1.3. 从嵌套块收集参数 2.2. 参数初始化2.2.1. 内置初始化2.2.2. 自定义初始化 2.…...
yolov5及yolov7实战之剪枝
之前有讲过一次yolov5的剪枝:yolov5实战之模型剪枝_yolov5模型剪枝-CSDN博客 当时基于的是比较老的yolov5版本,剪枝对整个训练代码的改动也比较多。最近发现一个比较好用的剪枝库,可以在不怎么改动原有训练代码的情况下,实现剪枝的…...
力扣第257题 二叉树的所有路径 c++ 树 深度优先搜索 字符串 回溯 二叉树
题目 257. 二叉树的所有路径 简单 给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。 叶子节点 是指没有子节点的节点。 示例 1: 输入:root [1,2,3,null,5] 输出:["1->2-&g…...
保研之旅·终
一.背景 学校: 中211 通信工程专业 成绩: 绩点前3% 英语: CET4:523 CET6:505 竞赛:两个国奖,若干省奖 科研:两项校级大创,无论文产出 二.基本情况 夏令营入营: 哈工大…...
达梦数据库 视图 错误 [22003]: 数据溢出
今天通过DBeaver连接访问达梦数据库的一个视图,报错:错误 [22003]: 数据溢出 经过分析,原因是视图字段的数据类型和原表的数据类型不一致造成的...
【文献阅读】【NMI 2022】LocalTransform :基于广义模板的有机反应性准确预测图神经网络
预测有机反应产物是有机化学的一个基本问题。基于成熟有机化学知识,化学家现在能够设计实验来制造用于不同目的的新分子。但是,它需要经验丰富的专业化学家来准确预测化学反应的结果。为了进一步帮助有机化学家并在数字化学时代实现全自动发现࿰…...
QQ浏览器怎么才能设置默认搜索引擎为百度
问题: 打开QQ浏览器,搜索相关信息时发现总是默认为”搜狗搜索引擎“,想将其转为”百度搜索引擎“ 解决: 1、点击浏览器右侧”菜单“图标,选择”设置“,如下图所示: 2、在”常规设置“中的”搜…...
Go Gin Gorm Casbin权限管理实现 - 3. 实现Gin鉴权中间件
文章目录 0. 背景1. 准备工作2. gin中间件2.1 中间件代码2.2 中间件使用2.3 测试中间件使用结果 3. 添加权限管理API3.1 获取所有用户3.2 获取所有角色组3.3 获取所有角色组的策略3.4 修改角色组策略3.5 删除角色组策略3.6 添加用户到组3.7 从组中删除用户3.8 测试API 4. 最终目…...
js 封装一个异步任务函数
// 异步任务 封装 // 1,定义函数 // 2,使用核心api(queueMicrotask,MutationObserver,setTimeout) function runAsynctask (callback){if(typeof queueMicrotask "function" ){queueMicrotask(callback)}else if( typeof MutationObserver "functio…...
广发证券 网站谁做的/b站推广软件
keka在创建压缩和解压时从不要求文件名。现在keka总是在拖放文件夹/文件进行压缩时要求新的文件名。这个问题是因为更新了有关文件访问的信息,那么该如何解决,恢复到以前那样? Keka文件访问权限解决办法 磁盘访问 为了能够像以前一样集成&…...
wordpress统计插件WP/seo排名查询软件
来源|新熵编辑|于松叶盲盒市场的不确定性正在加大。泡泡玛特的雷款滞销、利用福袋去库存等问题只是头部品牌透支用户信任、损失用户好感度的行为缩影,进入更大的视野,会发现整个盲盒市场已经开始趋于冷静和理智。盲盒圈就像一个围…...
外贸订单网站有哪些/百度人工客服
前言: 在讲解Kafka的架构前我们先了解一下什么是消息队列 1. 消息队列的讲解 消息: 应用之间的信息相互传递 消息队列(Message Queue): 将消息放在队列中保证消息可靠传递 1.1 消息队列的特点 应用系统之间解耦----12306–用户系统后台消息驱动:以消息驱动应用…...
h5网站制作/百度手机助手应用商店下载
在项目文件夹下使用npm包管理工具安装base64,此处要做兼容所以未使用‘js-base64’,参考base-64和js-base64 npm install base-64在页面的 ‘script’ 标签中引入 import Base64 from base-64;在逻辑代码中使用 var code 123456; var en Base64.enc…...
电商店铺设计/关键词seo排名怎么样
数智融合时代,必将唤起思想与技术的嬗变与觉醒!绘蓝图 揭秘“数矩觉醒”归纳起来,数智融合时代,企业用户将面临以下三方面的挑战:如何迎接快速增长的数据洪流?如何有效地提升数据利用率?如何实现…...
重庆龙华网站建设公司/百度在线客服中心
写本文之前首先感谢一下传智播客,因为他们的无私,我们才有了很多优质的学习视频。下面进入正题,介绍一下List、Set、Map。首先List和Set都属于Collection的子类。所以先介绍一下Collection集合 1.集合(Collection) (1)集合的由来?我们学习的…...