当前位置: 首页 > news >正文

最短路径专题8 交通枢纽 (Floyd求最短路 )

题目:

样例:

输入
4 5 2
0 1 1
0 2 5
0 3 3
1 2 2
2 3 4
0 2
输出
0 7

思路:

        由题意,绘制了该城市的地图之后,由给出的 k 个编号作为起点,求该点到各个点之间的最短距离之和最小的点是哪个,并输出该点,和该点到各个点之间的最短距离之和。

        这又是一个多起点多终点的题型,所以用 Floyd 算法非常的有效率。

代码详解如下:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <unordered_map>
#define endl '\n'
#define x first
#define y second
#define mk make_pair
#define int long long
#define NO puts("NO")
#define YES puts("YES")
#define umap unordered_map
#define INF 0x3f3f3f3f
#define All(x) (x).begin(),(x).end()
#pragma GCC optimize(3,"Ofast","inline")
#define ___G std::ios::sync_with_stdio(false),cin.tie(0), cout.tie(0)
using namespace std;
const int N = 2e6 + 10,M = 500;
using PII = pair<int,int>;int n,m,k;int dist[M][M];	// 定义各个点之间的最短距离数组// 初始化各个点之间的最短距离
inline void Init()
{memset(dist,INF,sizeof dist);// 自身点之间的距离是 0for(int i = 0;i <= n;++i){dist[i][i] = 0;}
}inline void Floyd()
{// 这一层是中间点for(int k = 0;k < n;++k){// 这一层是 i 点for(int i = 0;i < n;++i){// 这一层是 j 点for(int j = 0;j < n;++j){// 更新选取最短的 i 到 j 的最短距离方案 ,即 i 到 k  ,k 再到 jdist[i][j] = min(dist[i][j],dist[i][k] + dist[k][j]);}}}
}// 由 x 点到各个点之间的最短距离之和
inline int DistSum(int x)
{int sum = 0;for(int i = 0;i < n;++i){sum += dist[x][i];}return sum;
}inline void solve()
{	cin >> n >> m >> k;Init();	// 初始化最短路距离数组while(m--){int a,b,c;cin >> a >> b >> c;// 记录两个点之间的最短距离,min 防止自环dist[a][b] = dist[b][a] = min(dist[a][b],c);}// 开始求各个点之间的最短距离Floyd();PII ans = {-1,-1};	// 答案城市编号,已经答案城市到各个点之间的最短距离之和while(k--){int a;cin >> a;	// 获取城市编号点int distSum = DistSum(a);	// 求最短距离之和if(ans.x == -1) ans = {a,distSum};	// 记录第一个点else if(ans.y > distSum) ans = {a,distSum};	// 更新更短的最短距离之和的点做 交通枢纽}// 输出答案cout << ans.x << ' ' << ans.y << endl;
}
signed main()
{
//	freopen("a.txt", "r", stdin);
//	___G;int _t = 1;
//	cin >> _t;while (_t--){solve();}return 0;
}

最后提交:

相关文章:

最短路径专题8 交通枢纽 (Floyd求最短路 )

题目&#xff1a; 样例&#xff1a; 输入 4 5 2 0 1 1 0 2 5 0 3 3 1 2 2 2 3 4 0 2 输出 0 7 思路&#xff1a; 由题意&#xff0c;绘制了该城市的地图之后&#xff0c;由给出的 k 个编号作为起点&#xff0c;求该点到各个点之间的最短距离之和最小的点是哪个&#xff0c;并…...

文件扫描模块

文章目录 前言文件扫描模块设计初级扫描方案一实现单线程扫描整合扫描步骤 设计初级扫描方案二周期性扫描 总结 前言 我们这个模块考虑的是数据库里面的内容从哪里获取。 获取完成后&#xff0c;这时候,我们就需要把目录里面文件/子文件都获取出来,并存入数据库。 文件扫描模…...

MySQL之主从复制

概述&#xff1a; 将主库的数据 变更同步到从库&#xff0c;从而保证主库和从库数据一致。 它的作用是 数据备份&#xff0c;失败迁移&#xff0c;读写分离&#xff0c;降低单库读写压力 原理&#xff1a; 主服务器上面的任何修改都会保存在二进制日志&#xff08; Bin-log日志…...

[leetcode 单调栈] 901. 股票价格跨度 M

设计一个算法收集某些股票的每日报价&#xff0c;并返回该股票当日价格的 跨度 。 当日股票价格的 跨度 被定义为股票价格小于或等于今天价格的最大连续日数&#xff08;从今天开始往回数&#xff0c;包括今天&#xff09;。 例如&#xff0c;如果未来 7 天股票的价格是 [100…...

Java线程池:并发编程的利器

Java线程池&#xff1a;并发编程的利器 在多任务、高并发的时代&#xff0c;Java并发编程显得尤为重要。其中&#xff0c;Java线程池是一种高效的管理线程的工具&#xff0c;能够提高应用程序的性能和响应速度。本文将深入探讨Java线程池的工作原理、应用场景以及简单示例&…...

ARM硬件断点

hw_breakpoint 是由处理器提供专门断点寄存器来保存一个地址&#xff0c;是需要处理器支持的。处理器在执行过程中会不断去匹配&#xff0c;当匹配上后则会产生中断。 内核自带了硬件断点的样例linux-3.16\samples\hw_breakpoint\data_breakpoint.c static void sample_hbp_h…...

Java使用WebSocket(基础)

准备一个html页面 <!DOCTYPE HTML> <html> <head><meta charset"UTF-8"><title>WebSocket Demo</title> </head> <body><input id"text" type"text" /><button onclick"send()&…...

图像处理与计算机视觉--第五章-图像分割-自适应阈值分割

文章目录 1.自适应阈值分割介绍2.自适应阈值函数参数解析3.高斯概率函数介绍4.自适应阈值分割核心代码5.自适应阈值分割效果展示6.参考文章及致谢 1.自适应阈值分割介绍 在图片处理过程中&#xff0c;针对铺前进行二值化等操作的时候&#xff0c;我们希望能够将图片相应区域内所…...

记一次问题排查

1785年&#xff0c;卡文迪许在实验中发现&#xff0c;把不含水蒸气、二氧化碳的空气除去氧气和氮气后&#xff0c;仍有很少量的残余气体存在。这种现象在当时并没有引起化学家的重视。 一百多年后&#xff0c;英国物理学家瑞利测定氮气的密度时&#xff0c;发现从空气里分离出来…...

【Spring Boot】创建一个 Spring Boot 项目

创建一个 Spring Boot 项目 1. 安装插件2. 创建 Spring Boot 项目3. 项目目录介绍和运行注意事项 1. 安装插件 IDEA 中安装 Spring Boot Helper / Spring Assistant / Spring Initializr and Assistant插件才能创建 Spring Boot 项⽬ &#xff08;有时候不用安装&#xff0c;直…...

flutter中使用缓存

前言 在flutter项目中使用ListView或者PageView等有滚动条组件的时候&#xff0c;切换页面的时候&#xff0c;再切换回来会丢失之前的滑动状态&#xff0c;这个时候就需要需要使用缓存功能 缓存类 import package:flutter/material.dart;class KeepAliveWrapper extends Sta…...

京东数据分析平台:9月中上旬白酒消费市场数据分析

9月份&#xff0c;围绕白酒的热点不断。9月5日&#xff0c;瑞幸咖啡官微发布消息称&#xff0c;瑞幸与贵州茅台跨界合作推出的酱香拿铁刷新单品纪录&#xff0c;首日销量突破542万杯&#xff0c;销售额破1亿元。9月14日&#xff0c;贵州茅台官微发布消息称与德芙推出联名产品“…...

Linux安装 spark 教程详解

目录 一 准备安装包 二 安装 scala 三 修改配置文件 1&#xff09;修改 workers 文件 2&#xff09;修改 spark-env.sh文件 四 进入 spark 交互式平台 一 准备安装包 可以自行去 spark 官网下载想要的版本 这里准备了 spark3.1.2的网盘资源 链接: https://pan.baidu.com…...

动态内存管理函数(malloc,calloc,realloc,free)

动态内存函数 1.1malloc和free C语言提供了一个动态内存开辟的函数&#xff1a; void* malloc (size_t size); 这个函数向内存申请一块连续可用的空间&#xff0c;并返回指向这块空间的指针。 如果开辟成功&#xff0c;则返回一个指向开辟好空间的指针。如果开辟失败&#…...

云表|都有生产管理模块,MES和ERP有什么不同,该如何选择

MES和ERP是生产制造领域的两大知名系统&#xff0c;虽然早已声名鹊起&#xff0c;但仍有不少人难以明确区分两者的差异。下面将详细阐述这两个系统的不同之处。首先&#xff0c;要了解MES和ERP的定义。 MES系统&#xff1a;全称制造执行系统&#xff08;Manufacturing Executio…...

C语言 - 数组

目录 1. 一维数组的创建和初始化 1.1 数组的创建 1.2 数组的初始化 1.3 一维数组的使用 1.4 一维数组在内存中的存储 2. 二维数组的创建和初始化 2.1 二维数组的创建 2.2 二维数组的初始化 2.3 二维数组的使用 2.4 二维数组在内存中的存储 3. 数组越界 4. 数组作为函数参数 4.1…...

Vue 中的插槽(Slot),有什么用,不同插槽的区别?

Vue 中的插槽&#xff08;Slot案例详解&#xff09; 是一种非常有用的功能&#xff0c;用于组件之间的内容分发和复用。以下是关于插槽的一些重要概念&#xff1a; 插槽的作用: 插槽允许你将组件的内容分发到其子组件中&#xff0c;以实现灵活的组件复用和自定义布局。通过插槽…...

Linux登录自动执行脚本

一、所有用户每次登录时自动执行。 1、在/etc/profile文件末尾添加。 将启动命令添加到/etc/profile文件末尾。 2、在/etc/profile.d/目录下添加sh脚本。 在/etc/profile.d/目录下新建sh脚本&#xff0c;设置每次登录自动执行脚本。有用户登录时&#xff0c;/etc/profile会遍…...

架构方法、模型、范式、治理

从架构方法、模型、范式、治理等四个方面介绍架构的概念和方法论、典型业务场景下的架构范式、不同架构的治理特点这3个方面的内容...

Linux 安全 - 内核提权

文章目录 前言一、简介1.1 prepare_creds1.2 commit_creds 二、demo参考资料 前言 在这篇文章&#xff1a;Linux 安全 - Credentials 介绍了 Task Credentials 相关的知识点&#xff0c;接下来给出一个内核编程提权的例程。 一、简介 内核模块提权主要借助于 prepare_creds …...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

实战设计模式之模板方法模式

概述 模板方法模式定义了一个操作中的算法骨架&#xff0c;并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下&#xff0c;重新定义算法中的某些步骤。简单来说&#xff0c;就是在一个方法中定义了要执行的步骤顺序或算法框架&#xff0c;但允许子类…...

Vue3中的computer和watch

computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...

基于单片机的宠物屋智能系统设计与实现(论文+源码)

本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢&#xff0c;连接红外测温传感器&#xff0c;可实时精准捕捉宠物体温变化&#xff0c;以便及时发现健康异常&#xff1b;水位检测传感器时刻监测饮用水余量&#xff0c;防止宠物…...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...

python读取SQLite表个并生成pdf文件

代码用于创建含50列的SQLite数据库并插入500行随机浮点数据&#xff0c;随后读取数据&#xff0c;通过ReportLab生成横向PDF表格&#xff0c;包含格式化&#xff08;两位小数&#xff09;及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...