8.Mobilenetv2网络代码实现
代码如下:
import math
import os
import numpy as npimport torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo#1.建立带有bn的卷积网络
def conv_bn(inp, oup, stride):return nn.Sequential(nn.Conv2d(inp,oup,3,stride,bias=False),nn.BatchNorm2d(oup),nn.ReLU6(inplace=True))#2.建立卷积核是1x1的卷积网络
def conv_1x1_bn(inp, oup):return nn.Sequential(nn.Conv2d(inp,oup,1,1,0,bias=False),nn.BatchNorm2d(oup),nn.ReLU6(inplace=True))class InvertedResidual(nn.Module):def __init__(self, inp, oup, stride, expand_ratio):super(InvertedResidual,self).__init__()self.stride=strideassert stride in [1,2]hidden_dim=round(inp*expand_ratio)self.use_res_connect=self.stride==1 and inp==oupif expand_ratio == 1:self.conv=nn.Sequential(# --------------------------------------------## 进行3x3的逐层卷积,进行跨特征点的特征提取# --------------------------------------------#nn.Conv2d(hidden_dim,hidden_dim,3,stride, 1, groups=hidden_dim, bias=False),nn.BatchNorm2d(hidden_dim),nn.ReLU6(inplace=True),# -----------------------------------## 利用1x1卷积进行通道数的调整# -----------------------------------#nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),)else:self.conv=nn.Sequential(# -----------------------------------## 利用1x1卷积进行通道数的上升# -----------------------------------#nn.Conv2d(inp,hidden_dim,1,1,0,bias=False),nn.BatchNorm2d(hidden_dim),nn.ReLU6(inplace=True),# --------------------------------------------## 进行3x3的逐层卷积,进行跨特征点的特征提取# --------------------------------------------#nn.Conv2d(hidden_dim,hidden_dim,3,stride, 1, groups=hidden_dim, bias=False),nn.BatchNorm2d(hidden_dim),nn.ReLU6(inplace=True),# -----------------------------------## 利用1x1卷积进行通道数的下降# -----------------------------------#nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup))def forward(self,x):if self.use_res_connect:return x+self.conv(x)else:return self.conv(x)#搭建MobileNetV2网络
class MobileNetV2(nn.Module):def __init__(self, n_class=1000, input_size=224, width_mult=1.):super(MobileNetV2, self).__init__()block=InvertedResidualinput_channel=32last_channel=1280interverted_residual_setting = [# t, c, n, s[1, 16, 1, 1], # 256, 256, 32 -> 256, 256, 16[6, 24, 2, 2], # 256, 256, 16 -> 128, 128, 24 2[6, 32, 3, 2], # 128, 128, 24 -> 64, 64, 32 4[6, 64, 4, 2], # 64, 64, 32 -> 32, 32, 64 7[6, 96, 3, 1], # 32, 32, 64 -> 32, 32, 96[6, 160, 3, 2], # 32, 32, 96 -> 16, 16, 160 14[6, 320, 1, 1], # 16, 16, 160 -> 16, 16, 320]assert input_size % 32 == 0input_channel = int(input_channel * width_mult)self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel# 512, 512, 3 -> 256, 256, 32self.features=[conv_bn(3,input_channel,2)]for t,c,n,s in interverted_residual_setting:output_channel=int(c*width_mult)for i in range(n):if i==0:self.features.append(block(input_channel,output_channel,s, expand_ratio=t))else:self.features.append(block(input_channel,output_channel,1, expand_ratio=t))# input_channel修改为该轮的输出层数input_channel = output_channelself.features.append(conv_1x1_bn(input_channel, self.last_channel))self.features=nn.Sequential(*self.features)self.classifier=nn.Sequential(nn.Dropout(0.2),nn.Linear(self.last_channel,n_class))self._initialize_weights()def forward(self,x):x=self.features(x)x=x.mean(3).mean(2)x=self.classifier(x)return xdef _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):n = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsm.weight.data.normal_(0, math.sqrt(2. / n))if m.bias is not None:m.bias.data.zero_()elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()elif isinstance(m, nn.Linear):n = m.weight.size(1)m.weight.data.normal_(0, 0.01)m.bias.data.zero_()if __name__ == '__main__':print("........................................")#数据集生成input=torch.randn(1,3,224,224)print(input.shape)#MobileNetV2的输出ss=MobileNetV2()# print(ss)output=ss(input)print(output.shape)
相关文章:
8.Mobilenetv2网络代码实现
代码如下: import math import os import numpy as npimport torch import torch.nn as nn import torch.utils.model_zoo as model_zoo#1.建立带有bn的卷积网络 def conv_bn(inp, oup, stride):return nn.Sequential(nn.Conv2d(inp,oup,3,stride,biasFalse),nn.Bat…...
Spring Boot Controller
刚入门小白,详细请看这篇SpringBoot各种Controller写法_springboot controller-CSDN博客 Spring Boot 提供了Controller和RestController两种注解。 Controller 返回一个string,其内容就是指向的html文件名称。 Controller public class HelloControll…...
在网络安全、爬虫和HTTP协议中的重要性和应用
1. Socks5代理:保障多协议安全传输 Socks5代理是一种功能强大的代理协议,支持多种网络协议,包括HTTP、HTTPS和FTP。相比之下,Socks5代理提供了更高的安全性和功能性,包括: 多协议支持: Socks5代…...
Web测试框架SeleniumBase
首先,SeleniumBase支持 pip安装: > pip install seleniumbase它依赖的库比较多,包括pytest、nose这些第三方单元测试框架,是为更方便的运行测试用例,因为这两个测试框架是支持unittest测试用例的执行的。 Seleniu…...
jvm打破砂锅问到底- 为什么要标记或记录跨代引用
为什么要标记或记录跨代引用. ygc时, 直接把老年代引用的新生代对象(可能是对象区域)记录下来当做根, 这其实就是依据第二假说和第三假说, 强者恒强, 跨代引用少(存在互相引用关系的两个对象,是应该倾 向于同时生存或者同时消亡的). 拿ygc老年代跨代引用对象当做根…...
小程序长期订阅
准备工作 ::: tip 管理后台配置 小程序类目:住建(硬性要求) 功能-》订阅消息-》我的模版 申请模版:1、预约进度通知 2、申请结果通知 3、业务办理进度提醒 ::: 用户订阅一次后,可长期下发多条消息。目前长期性订阅…...
Studio One6.5中文版本版下载及功能介绍
Studio One是一款专业的音乐制作软件,由美国PreSonus公司开发。该软件提供了全面的音频编辑和混音功能,包括录制、编曲、合成、采样等多种工具,可用于制作各种类型的音乐,如流行音乐、电子音乐、摇滚乐等。 Studio One的主要特点…...
07-Zookeeper分布式一致性协议ZAB源码剖析
上一篇:06-Zookeeper选举Leader源码剖析 整个Zookeeper就是一个多节点分布式一致性算法的实现,底层采用的实现协议是ZAB。 1. ZAB协议介绍 ZAB 协议全称:Zookeeper Atomic Broadcast(Zookeeper 原子广播协议)。 Zook…...
云原生安全应用场景有哪些?
当今数字化时代,数据已经成为企业最宝贵的资产之一,而云计算作为企业数字化转型的关键技术,其安全性也日益受到重视。随着云计算技术的快速发展,云原生安全应用场景也越来越广泛,下面本文将从云原生安全应用场景出发&a…...
Step 1 搭建一个简单的渲染框架
Step 1 搭建一个简单的渲染框架 万事开头难。从萌生到自己到处看源码手抄一个mini engine出来的想法,到真正敲键盘去抄,转眼过去了很久的时间。这次大概的确是抱着认真的想法,打开VS从零开始抄代码。不知道能坚持多久呢。。。 本次的主题是搭…...
Excel 插入和提取超链接
构造超链接 HYPERLINK(D1,C1)提取超链接 Sheet页→右键→查看代码Sub link()Dim hl As HyperlinkFor Each hl In ActiveSheet.Hyperlinkshl.Range.Offset(0, 1).Value hl.AddressNext End Sub工具栏→运行→运行子过程→提取所有超链接地址参考: https://blog.cs…...
基础架构开发-操作系统、编译器、云原生、嵌入式、ic
基础架构开发-操作系统、编译器、云原生、嵌入式、ic 操作系统编译器词法分析AST语法树生成语法优化生成机器码 云原生容器开发一般遇到的岗位描述RDMA、DPDK是什么东西NFV和VNF是什么RisingWave云原生存储引擎开发实践 单片机、嵌入式雷达路线规划 ic开发 操作系统 以C和Rust…...
C++-Mongoose(3)-http-server-https-restful
1.url 结构 2.http和 http-restful区别在于对于mg_tls_opts的赋值 2.1 http和https 区分 a) port地址 static const char *s_http_addr "http://0.0.0.0:8000"; // HTTP port static const char *s_https_addr "https://0.0.0.0:8443"; // HTTP…...
git多分支、git远程仓库、ssh方式连接远程仓库、协同开发(避免冲突)、解决协同冲突(多人在同一分支开发、 合并分支)
1 git多分支 2 git远程仓库 2.1 普通开发者,使用流程 3 ssh方式连接远程仓库 4 协同开发 4.1 避免冲突 4.2 协同开发 5 解决协同冲突 5.1 多人在同一分支开发 5.2 合并分支 1 git多分支 ## 命令操作分支-1 创建分支git branch dev-2 查看分支git branch-3 分支合…...
ChatGPT或将引发现代知识体系转变
作为当下大语言模型的典型代表,ChatGPT对人类学习方式和教育发展所产生的变革效应已然引起了广泛关注。技术的快速发展在某种程度上正在“倒逼”教育领域开启更深层次的变革。在此背景下,教育从业者势必要学会准确识变、科学应变、主动求变、以变应变&am…...
【爬虫实战】用pyhon爬百度故事会专栏
一.爬虫需求 获取对应所有专栏数据;自动实现分页;多线程爬取;批量多账号爬取;保存到mysql、csv(本案例以mysql为例);保存数据时已存在就更新,无数据就添加; 二.最终效果…...
焦炭反应性及反应后强度试验方法
声明 本文是学习GB-T 4000-2017 焦炭反应性及反应后强度试验方法. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 7— 进气口; 8— 测温热电偶。 图 A.1 单点测温加热炉体结构示意图 A.3 温度控制装置 控制精度:(11003)℃。…...
链表(3):双链表
引入 我们之前学的单向链表有什么缺点呢? 缺点:后一个节点无法看到前一个节点的内容 那我们就多设置一个格子prev用来存放前面一个节点的地址,第一个节点的prev存最后一个节点的地址(一般是null) 这样一个无头双向…...
【TES720D】基于复旦微的FMQL20S400全国产化ARM核心模块
TES720D是一款基于上海复旦微电子FMQL20S400的全国产化核心模块。该核心模块将复旦微的FMQL20S400(兼容FMQL10S400)的最小系统集成在了一个50*70mm的核心板上,可以作为一个核心模块,进行功能性扩展,特别是用在控制领域…...
Python 列表切片陷阱:引用、复制与深复制
大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 Python 列表的切片和赋值操作很基础,之前也遇到过一些坑, 但今天刷 Codewars 时发现了一个更大的坑,故在此记录。 Python 列表赋值&am…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
渗透实战PortSwigger靶场:lab13存储型DOM XSS详解
进来是需要留言的,先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码,输入的<>当成字符串处理回显到页面中,看来只是把用户输…...
