【学习之路】Multi Agent Reinforcement Learning框架与代码
【学习之路】Multi Agent Reiforcement Learning框架与代码
Introduction
国庆期间,有个客户找我写个代码,是强化学习相关的,但我没学过,心里那是一个慌,不过好在经过详细的调研以及自身的实力,最后还是解决了这个问题。
强化学习的代码也是第一次接触,在这个过程中也大概了解了多agent强化学习的大致流程,因此记录这次代码和文章学习的过程还是十分有必要的。
要完成的文章是:Flexible Formation Control Using Hausdorff Distance: A Multi-agent Reinforcement Learning Approach,该文章没有开源。
以下均为个人简介,如有不当,还请见谅。
Timeline
- 从目标文章中查找类似文章,最好是开源的
- Decentralized Multi-agent Formation Control via Deep Reinforcement Learning:这篇文章有算法的基本流程
- Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments:这篇文章是目标文章所使用仿真环境的出处
- 查找多agent强化学习的开源代码
- Multi-Agent-Deep-Deterministic-Policy-Gradients:这是Multi-Agent Actor-Critic这篇文章里面所提方法代码的pytorch版本,官方是tensorflow写的
- Reinforcement_Learning_Swarm:这篇没有利用框架,但通过它可以较好地理解整个流程
- multiagent-particle-envs:这是算法的仿真环境,同时也相当于一个框架
- 学习这些代码,推荐先学习没有利用框架的,也就是第二篇,然后看用框架写的
Code Note
主要针对框架代码进行学习,即:multiagent-particle-envs 和Multi-Agent-Deep-Deterministic-Policy-Gradients,后者使用了前者的环境。
整体流程
首先介绍一下训练的整体流程,方便更好的理解:
- 创建多agent的环境
- 实现强化学习的模型M(actor-critic模型)
- 确定相关参数:迭代次数,学习率等
- 循环
- 重置环境获得当前的observation
- 根据observation输入到M中的actor网络(这部分不作讲解),得到action
- 根据action更新当前的state,获得reward,更新的observation
- 将这些state存入memory
- 每隔一定迭代次数,从memory里面采样一些state,输入到模型M里面,从而对M进行训练
环境代码
该项目下代码以及文件夹的功能如下:

下面主要介绍enviroment文件下一些函数的作用。
首先是为每个agent分配action空间,代码如下:

然后是在进行下一步(step函数)的时候,对每个agent的action进行更新,代码如下:

红框部分就是对每个agent的action进行设置,action里面的u我个人认为是受力,因为在后面的代码中存在利用u来计算受力的情况。
得到action后,利用action对state进行更新,该部分的代码在core.py里面的World类当中,代码如下:

其中利用u计算受力的代码为:

为什么说p_force是受力呢,可以看看integrate_state这个函数,如下:

得到agent的state之后,就是计算reward,observation等变量,代码的调用在environment.py下:

从make_env.py文件里面可以看出,这些函数的相关实现在scenarios文件下的py文件里面:

接下来看这些函数是怎么实现的,以simle_spread.py文件为例:
首先是reset_world函数,它是对环境里面的物体进行初始化,代码如下:

其中p_pos是位置信息,p_vel是速度信息,c是交流信息。
然后is_collision函数判断是否发生碰撞,代码如下:

接着是reward函数,如果你设计了自己的reward,需要在这里实现:

最后是observation函数,如果你有自己的设计,也要在这里实现:

了解了以上这些,对于一个简单的多agent强化学习的情况你也能够实现了。
相关文章:
【学习之路】Multi Agent Reinforcement Learning框架与代码
【学习之路】Multi Agent Reiforcement Learning框架与代码 Introduction 国庆期间,有个客户找我写个代码,是强化学习相关的,但我没学过,心里那是一个慌,不过好在经过详细的调研以及自身的实力,最后还是解…...
android 13.0 SystemUI导航栏添加虚拟按键功能(二)
1.概述 在13.0的系统产品开发中,对于在SystemUI的原生系统中默认只有三键导航,想添加其他虚拟按键就需要先在构建导航栏的相关布局 中分析结构,然后添加相关的图标xml就可以了,然后添加对应的点击事件,就可以了,接下来先分析第二步关于导航栏的相关布局情况 然后实现功能…...
Java8 新特性之Stream(二)-- Stream的中间操作
目录 1.filter(Predicate) 2.map(Function) 3.flatMap(Function) 4.distinct() 5.sorted([Comparator]) 6.limit(n) 7.skip(n) 8.peek(Consumer)...
CA与区块链之数字签名详解
CA与区块链验证本质上都是数字签名,首先,我们看一下什么是数字签名! 数字签名 数字签名是公钥密码学中的一种技术,用于验证信息的完整性和发送者的身份。简而言之,数字签名是一种确认信息来源和信息完整性的手段。它通…...
一文解读如何应用 REST 对资源进行访问?
文章目录 一、REST 简介二、涉及注解2.1 RequestMapping2.2 PathVariable2.3 RestController2.4 GetMapping、PostMapping、PutMapping、DeleteMapping补充:PathVariable、RequestBody、RequestParam 区别与应用 三、REST风格案例 一、REST 简介 REST (Representat…...
使用JAVA发送邮件
这里用java代码编写发送邮件我采用jar包,需要先点击这里下载三个jar包:这三个包分别为:additionnal.jar;activation.jar;mail.jar。这三个包缺一不可,如果少添加或未添加均会报下面这个错误: C…...
【JavaEE】_servlet程序的编写方法
目录 1. 创建项目 2. 引入依赖 3. 创建目录结构 3.1 在main目录下创建一个webapp目录 3.2 在webapp目录下创建一个WEB-INF目录 3.3 在WEB-INF目录下创建一个web.xml文件 3.4 在web.xml中进行代码编写 4. 编写代码 4.1 在java目录下创建类 4.2 打印"hello world&…...
美国市场三星手机超苹果 中国第一属华为
报告显示,截至5月份的三个月,iOS系统在美国、澳大利亚以及日本表现不俗。Android系统份额则在英国、德国以及法国实现增长。在中国城市地区,iOS份额同比基本持平,而Android份额则达到80.5%,同比增长1个百分点。 三星在…...
nodejs+vue+elementui医院挂号预约管理系统4n9w0
前端技术:nodejsvueelementui 前端:HTML5,CSS3、JavaScript、VUE 1、 node_modules文件夹(有npn install Express 框架于Node运行环境的Web框架, 开发语言 node.js 框架:Express 前端:Vue.js 数据库:mysql 数据库工具ÿ…...
调试技巧(课件图解)
...
react中获取input输入框内容的两种方法
一.通过event对象信息的方式 <input onChange{(e)>this.inputChange(e)}/> <button onClick{()>this.getInputValue} >获取input的值</button>inputChange(e){alert(e.target.value)this.setState({username:e.target.value}) } getInputValue(){aler…...
Linux基础—1
1、命令行 1) 重要快捷键 按键作用Tab命令补全Ctrl强行终止当前程序Ctrld键盘输入结束或退出终端Ctrls暂停当前程序,暂停后按下任意键恢复运行Ctrlz将当前程序放到后台运行,恢复到前台为命令fgCtrla将光标移至输入行头,相当于Home键Ctrle将…...
十个面试排序算法
一、 前言 最常考的是快速排序和归并排序,并且经常有面试官要求现场写出这两种排序的代码。对这两种排序的代码一定要信手拈来才行。还有插入排序、冒泡排序、堆排序、基数排序、桶排序等。面试官对于这些排序可能会要求比较各自的优劣、各种算法的思想及其使用场景…...
技术学习群-第四期内容共享
本期是技术群聊的第四期。还是那句话,《群聊免费进入》。一起来看看本期分享内容。 uiautomator-Error问题 在使用u2的过程中,有时候需要使用到uiautomator这个工具来进行查阅层级。但是博主遇到了这么个问题。 《问题分析》:发生此问题的原因…...
冒泡排序/鸡尾酒排序
冒泡排序 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过多次交换相邻元素的位置来实现排序。它的基本思想是从数组的第一个元素开始,比较相邻的两个元素,如果它们的顺序错误,则交换它们的位置。重复进…...
代码随想录算法训练营第五十三天|309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费
代码随想录算法训练营第五十三天|309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费 309.最佳买卖股票时机含冷冻期714.买卖股票的最佳时机含手续费 309.最佳买卖股票时机含冷冻期 题目链接:309.最佳买卖股票时机含冷冻期 文章链接 状态:有…...
【Docker】Docker的使用案例以及未来发展、Docker Hub 服务、环境安全、容器部署安全
作者简介: 辭七七,目前大二,正在学习C/C,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖…...
qt qtabwidget获取当前选项卡的所有按键
要获取当前选项卡中的所有按键,可以通过以下步骤进行: 通过currentIndex()函数获取当前选项卡的索引。 使用widget()函数获取当前选项卡的QWidget。 连接QWidget的keyPressEvent事件,并在事件处理函数中获取按下的按键信息。 下面是示例代…...
为什么Excel插入图片不显示,点击能够显示
很久没有Excel了,今天在做Excel表格时,发现上传图片后不能显示,但是点击还是能够出现图片的 点击如下 点击能看到,但是不显示? 最后发现只需鼠标右键点击浮动即可显示...
使用Python创建faker实例生成csv大数据测试文件并导入Hive数仓
文章目录 一、Python生成数据1.1 代码说明1.2 代码参考 二、数据迁移2.1 从本机上传至服务器2.2 检查源数据格式2.3 检查大小并上传至HDFS 三、beeline建表3.1 创建测试表并导入测试数据3.2 建表显示内容 四、csv文件首行列名的处理4.1 创建新的表4.2 将旧表过滤首行插入新表 一…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...
[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
迁移科技3D视觉系统:重塑纸箱拆垛场景的智能革命
一、传统拆垛场景的困局与破局之道 在汽车零部件仓库中,每天有超过2万只异形纸箱需要拆垛分拣。传统人工拆垛面临三大挑战: 效率瓶颈:工人每小时仅能处理200-300件,且存在间歇性疲劳安全隐患:20kg以上重箱搬运导致年…...
板凳-------Mysql cookbook学习 (十--2)
5.12 模式匹配中的大小写问题 mysql> use cookbook Database changed mysql> select a like A, a regexp A; ------------------------------ | a like A | a regexp A | ------------------------------ | 1 | 1 | --------------------------…...
AIGC 基础篇 Python基础 02
1.bool类型 书接上回,我们上次最后讲了三大数据类型,除了这三个之外,Python也有bool类型,也就是True和False。 a 2 print(a1) print(a2) 像这里,输出的内容第一个是False,因为a的值为2,而第…...
