当前位置: 首页 > news >正文

ai_drive67_基于不确定性的多视图决策融合

论文链接:https://openreview.net/forum?id=OOsR8BzCnl5
https://arxiv.org/abs/2102.02051

代码链接:https://github.com/hanmenghan/TMC

Zongbo Han, Changqing Zhang, Huazhu Fu, Joey Tianyi Zhou, Trusted Multi-View Classification, International Conference on Learning Representations (ICLR) 2021

作者另外一篇结合不确定性与 mix up 的相关文章
UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup

1. 方法动机

1.1. 方法动机

多模态人工智能技术正在被广泛应用到智能医疗、无人系统等重要领域,设计精准、可靠的多模态学习技术成为支持重要应用的关键。

多模态数据为智能系统决策提供了丰富信息,使得多模态智能系统可以 “兼听则明”,提高分类和预测准确性。

然而,在许多代价敏感场景中,多模态融合及决策的可信性往往更加重要。

对于多模态分类任务,传统方法通常假设各模态质量和任务相关性是稳定的。

但实际上,对于不同样本或在不同场景下,模态的质量和任务的相关程度往往具有动态性。如多传感器场景中,RGB 图像在光线好时更有效,而近红外图像在可以在视觉困难情况下提供更重要的信息。

多模态医学诊断中,往往存在多项检查数据,对于不同患者同一检查项目所提供信息的重要性也会有所不同。此外,传感器的不稳定以及损坏导致数据获取异常,也给融合带来挑战。考虑到多模态数据质量的动态性,需要使多模态智能系统可以做到可靠而且有证据地融合多模态信息,即 “信而有征”,从而提高分类和预测的稳定性和可信性。

本文使用不确定性对此动态性进行建模、利用一种改进的证据融合策略集成多模态信息。论文题为 Trusted Multi-View Classification ,现已被 ICLR 2021 收录。

基于此,不仅能在模态质量动态变化时获得更加稳定的分类结果,同时能够估计决策信心,并对分类结果和分类信心进行模态级溯源。整体上,所提方法在多模态协同学习(兼听则明)中,对不同模态进行证据估计(信而有征),从而支持融合及决策的可靠性和稳定性。

在这里插入图片描述

1.2

1.3

2. proposed method

2.1 不确定性和证据理论

在使用 softmax 的分类模型中,最大的 softmax 输出用于最终预测会使即使错误的预测也有较高的置信度(over-confident)。

主观逻辑(subjective logic)算法能够很好的解决这一问题。与普通的分类不同,主观逻辑通过将输出建模为狄利克雷分布来获得不同类的分配概率和不确定性。

具体地,对于视图 ,我们有,

其中 表示不确定性, 表示第 类的分配概率。对第 个视图,主观逻辑将证据 和狄利克雷分布的参数

进行了联系,即

。然后,不同类的分配概率和不确定性可以由以下公式计算得到:

其中,

2.2 DS 组合规则用于多模态分类

DS 组合规则用于多模态分类

对于模态 可以得到图片,现在考虑使用 DS 组合规则将 个独立的模态所得到的分配概率进行组合。

给定 和 ,可以使用以下规则进行融合:

具体的计算方式为:

其中 反映了 和 的冲突程度。

根据 DS 组合规则的可传递性,我们可以得到,对于 个模态的融合方式:
.

该组合方式具有较好的合理性和可解释性。不同类的分配概率和不确定性计算的过程实际保证了如下特性:(1)观测到的第 类的证据越多,分配给第 类的可能性就越大,反之亦然;(2)若所有类证据都不足,则整体不确定性较大。此外,目标函数还通过抑制错误标签对应的证据避免不确定性小但分类错误的情况。

通过学习获得

2.3 通过学习获得 M

传统神经网络通常使用交叉熵损失进行训练:

在这里插入图片描述

由于模型的输出为狄利克雷分布,需要对其进行调整,得到下式:

在这里插入图片描述

其中 ψ 是 digamma 函数。

上述损失能够促进模型每个样本的正确标签比其他类生成更多的证据,但是不能保证错误类的证据尽量少。我们期望对于错误分类的样本的证据变为 0。因此以下损失函数被引入用来对证据进行正则化。

在这里插入图片描述

给出狄利克雷分布参数 后的损失可以写作:
在这里插入图片描述

在多模态框架下,我们采用多任务策略,总损失如下所示:
在这里插入图片描述

3.3. 实验结果

实验表明,所提方法可以较为灵敏地感知噪声的动态变化 (更多实验见论文):

3.1 实验分析

在这里插入图片描述
图 2. 不确定性密度分布:分布内 / 外样本对比.

在这里插入图片描述
图 3. 典型确定性和不确定性分类结果.

3.2 小结

针对多模态之间关系的不稳定性或动态性,此次研究首次提出可信多模态融合方法,设计了支持可信和可解释的多模态分类算法。

所提出的模型基于证据理论以可学习方式进行自适应的动态集成,对每个样本的每个模态进行不确定性估计,使模型能够在复杂多变场景下保证分类的可靠性和稳定性。

3.3 应用场景

潜在应用场景主要包括:

  1. 需要可信决策的多模态分类任务,如智能医疗、自动驾驶等代价敏感任务;

  2. 模态质量动态变化的应用场景;

  3. 寻求决策可溯源的多模态集成场景;

  4. 多传感器系统中容易出现传感器故障的场景。

相关文章:

ai_drive67_基于不确定性的多视图决策融合

论文链接:https://openreview.net/forum?idOOsR8BzCnl5 https://arxiv.org/abs/2102.02051 代码链接:https://github.com/hanmenghan/TMC Zongbo Han, Changqing Zhang, Huazhu Fu, Joey Tianyi Zhou, Trusted Multi-View Classification, Internatio…...

Docker逃逸---procfs文件挂载

一、产生原因 将宿主机/proc目录挂载进了容器,而该目录内的/proc/sys/kernel/core_pattern文件是负责进程奔溃时内存数据转储的,当第一个字符是| 管道符时,后面的部分会以命令行的方式进行解析并运行,攻击者可以将恶意文件写入该…...

[Python小项目] 从桌面壁纸到AI绘画

从桌面壁纸到AI绘画 一、前言 1.1 确认问题 由于生活和工作需要,小编要长时间的使用电脑,小编又懒,一个主题用半年的那种,所以桌面壁纸也是处于常年不更换的状态。即时改变主题也是在微软自带的壁纸中选择,而这些自…...

【Docker 内核详解】namespace 资源隔离(五):User namespaces

【Docker 内核详解 - namespace 资源隔离】系列包含: namespace 资源隔离(一):进行 namespace API 操作的 4 种方式namespace 资源隔离(二):UTS namespace & IPC namespacenamespace 资源隔…...

网络原理必知会

衔接上文:网络原理必知会_念君思宁的博客-CSDN博客 流量控制: 流量控制也是保证可靠性的机制 对于滑动窗口,批量发送数据而言,窗口越大,相当于批量发送的数据越多,整体的速度也就越快了,但是&…...

ELK 日志分析系统介绍与部署

目录 一、ELK 简介: 1.开源工具介绍: 2.其它组件: 2.1 Filebeat: 2.2 Fluentd: 2.3 缓存/消息队列(redis、kafka、RabbitMQ等): 3. filebeat 结合 logstash 带来好处: 二、为什么要…...

Android 内存治理之线程

1、 前言 当我们在应用程序中启动一个线程的时候,也是有可能发生OOM错误的。当我们看到以下log的时候,就说明系统分配线程栈失败了。 java.lang.OutOfMemoryError: pthread_create (1040KB stack) failed: Out of memory这种情况可能是两种原因导致的。…...

三、K8S之ReplicaSet

ReplicaSet 一、概述 Kubernetes最核心的功能是编排,编排操作都是依靠控制器对象来完成,高级控制器控制着基础的控制器,基础控制器再去控制Pod,Pod里面再包容器。K8S项目里API对象层级大概就是这样。 而ReplicaSet这个控制器是…...

【基础篇】四、本地部署Flink

文章目录 1、本地独立部署会话模式的Flink2、本地独立部署会话模式的Flink集群3、向Flink集群提交作业4、Standalone方式部署单作业模式5、Standalone方式部署应用模式的Flink Flink的常见三种部署方式: 独立部署(Standalone部署)基于K8S部署…...

简述什么是迭代器(Iterator)?

迭代器(Iterator)是一种设计模式,Java 中的迭代器是集合框架中的一个接口,它可以让程序员遍历集合中的元素而无需暴露集合的内部结构。使用迭代器可以遍历任何类型的集合,例如 List、Set 和 Map 等。 通过调用集合类的 iterator() 方法可以获取一个迭代器,并使用 hasNext…...

DarkGate恶意软件通过消息服务传播

导语 近日,一种名为DarkGate的恶意软件通过消息服务平台如Skype和Microsoft Teams进行传播。它冒充PDF文件,利用用户的好奇心诱使其打开,进而下载并执行恶意代码。这种攻击手段使用了Visual Basic for Applications(VBA&#xff0…...

LeetCode——动态规划篇(六)

刷题顺序及思路来源于代码随想录,网站地址:https://programmercarl.com 目录 300. 最长递增子序列 - 力扣(LeetCode) 674. 最长连续递增序列 - 力扣(LeetCode) 718. 最长重复子数组 - 力扣&#xff08…...

sql 注入(2), 文件读写 木马植入 远程控制

sql 注入 文件读写 木马植入 远程控制 一, 检测读写权限 查看mysql全局变量 SHOW GLOBAL VARIABLES LIKE %secure%secure_file_priv 空, 则任意读写secure_file_priv 路径, 则只能读写该路径下的文件secure_file_priv NULL, 则禁止读写二, 读取文件, 使用 load_file() 函数…...

求直角三角形第三点的坐标

文章目录 求直角三角形第三点的坐标1. 原理2. 数学公式3. 推导过程 求直角三角形第三点的坐标 1. 原理 已知内容有: P1、P2 两点的坐标; dis1 为 P1与P2两点之间的距离; dis2 为 P2与P3两点之间的距离; 求解: …...

【Kotlin精简】第3章 类与接口

1 简介 Kotlin类的声明和Java没有什么区别,Kotlin中,类的声明也使用class关键字,如果只是声明一个空类,Kotlin和Java没有任何区别,不过定义类的其他成员会有一些区别。实例化类不用写new,类被继承或者重写…...

关于面试以及小白入职后的一些建议

面试的本质 面试的过程是一个互相选择的过程;面试官的诉求是,了解应聘者的个人基本信息、工作态度、专业能力及其他综合能力是否与公司招聘岗位匹配;面试者的诉求是,拿下招聘岗位offer,获得工作报酬; 面试…...

Excel 从网站获取表格

文章目录 导入网站数据导入股票实时行情 用 Excel 获取网站数据的缺点:只能获取表格类的数据,不能获取非结构化的数据。 导入网站数据 转到地址之后: 实测该功能经常导致 Excel 卡死。 导入股票实时行情...

rsync 备份工具(附rsync+inotify 实时同步部署实例)

rsync 备份工具(附rsyncinotify 实时同步部署实例) 1、rsync概述1.1关于rsync1.2rsync 的特点1.3工作原理 2、rsync相关命令2.1基本格式和常用选项2.2启动和关闭rsync服务2.3下行同步基本格式2.4上行同步基本格式2.5免交互2.5.1指定密码文件2.5.2rsync-daemon方式2.…...

Java架构师缓存性能优化

目录 1 缓存的负载策略2 缓存的序列化问题3 缓存命中率低4 缓存对数据库高并发访问5 缓存数据刷新的策略5.1. 实时策略5.2. 异步策略5.3. 定时策略6 何时写缓存7 批量数据来更新缓存8 缓存数据过期的策略9 缓存数据如何恢复10 缓存数据如何迁移11 缓存冷启动和缓存预热想学习架…...

探索服务器潜能:创意项目、在线社区与其他应用

目录 一、部署自己的创意项目 优势: 劣势: 结论: 二、打造一款全新的在线社区 优势: 劣势: 结论: 三、其他用途 总结: 随着互联网的发展,越来越多的人开始拥有自己的服务器…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

算法刷题-回溯

今天给大家分享的还是一道关于dfs回溯的问题,对于这类问题大家还是要多刷和总结,总体难度还是偏大。 对于回溯问题有几个关键点: 1.首先对于这类回溯可以节点可以随机选择的问题,要做mian函数中循环调用dfs(i&#x…...