当前位置: 首页 > news >正文

做网站为什么用php/网站注册页面

做网站为什么用php,网站注册页面,电商网站制作成手机app,网站开发 需要用到什么软件浅谈机器学习中的概率模型 其实,当牵扯到概率的时候,一切问题都会变的及其复杂,比如我们监督学习任务中,对于一个分类任务,我们经常是在解决这样一个问题,比如对于一个n维的样本 X [ x 1 , x 2 , . . . .…

浅谈机器学习中的概率模型

其实,当牵扯到概率的时候,一切问题都会变的及其复杂,比如我们监督学习任务中,对于一个分类任务,我们经常是在解决这样一个问题,比如对于一个n维的样本 X = [ x 1 , x 2 , . . . . . x n ] X=[x_1,x_2,.....x_n] X=[x1,x2,.....xn],我们想知道它的类别,这个时候我们可以采用概率模型,比如贝叶斯模型,但是,我们知道样本 X X X属于什么类别,可能跟他的所有特征有关,同时,他的所有特征可能又存在着及其复杂的联系,所以如果我们真的考虑特征之间各种复杂的关系,在计算P(y|X)这个概率时往往很困难,因为我们在求解这样的一个概率模型时,还需要考虑样本特征之间的及其复杂的联系。
所以,我们所采用的方法往往是假设样本特征之间是独立的,这样,去求解我们的问题。而且往往这样的做法有时候也可以有着不错的效果。
之所以会有这样的原因,是因为比如两个特征之间有着正相关或者负相关的关系,那么通过上面的方法,虽然没有考虑特征之间的关系,但是特征对于样本分类的影响还是会很大程度的考虑其中,所以,往往我们假设特征之间是独立的,去进行建模往往也可以取得很好的成绩,因为在建模的时候,特征之间的相关性对于样本分类的影响,会被考虑到。
还一种在概率论中的处理在马尔可夫模型中可以体现,其在考虑一个序列之间的关系时,只考虑相邻的。
在博主看来,我们去进行一些概率计算的简化时,需要考虑是否这种简化对于我们的任务有着较大的影响,我们的模型是否在建模的时候,即使由于概率计算的简化导致信息流失,但是模型可以很大程度,去弥补这种信息流失。
我举一个很好的例子:

比如一个人 w-体重 70kg h-身高180cm f-颜值打分90 s-形象打分95 现在根据这个四个值去探讨这个人是否被一个陌生人习惯的概率
我们知道 身高 颜值打分 形象打分 这三个数值明显是有关系的,身高会影响形象打分,颜值也会影响形象打分,那假设这四个特征独立,其实并不影响我们的建模,比如一个人最终被人喜欢的打分模型为(理想的打分模型):
P=0.1w+h+1.4f+z

因为有一个潜在的关系: s=0.4h+0.6f+z,z为其他影响变量
那其实这个模型仍然是线性的,对于这个一个线性的模型,我们的模型仍然是可以学习到的。
比如:
我们可能会学习到这样的模型:
P=0.1w+0.6h+0.8f+s

这个模型其实和理想模型是等价的,是不是,其实 s h f 之间的相关性并没有影响我们求解出最好的模型。

但是这是在相关性比较简单的情况下可行,如果较为复杂,我们的模型也需要足够灵活,能够在模型中考虑到特征之间的相关性。

相关文章:

浅谈机器学习中的概率模型

浅谈机器学习中的概率模型 其实,当牵扯到概率的时候,一切问题都会变的及其复杂,比如我们监督学习任务中,对于一个分类任务,我们经常是在解决这样一个问题,比如对于一个n维的样本 X [ x 1 , x 2 , . . . .…...

MySQL 函数 索引 事务 管理

目录 一. 字符串相关的函数 二.数学相关函数 ​编辑 三.时间日期相关函数 date.sql 四.流程控制函数 centrol.sql 分页查询 使用分组函数和分组字句 group by 数据分组的总结 多表查询 自连接 子查询 subquery.sql 五.表的复制 六.合并查询 七.表的外连接 …...

Flink如何基于事件时间消费分区数比算子并行度大的kafka主题

背景 使用flink消费kafka的主题的情况我们经常遇到,通常我们都是不需要感知数据源算子的并行度和kafka主题的并行度之间的关系的,但是其实在kafka的主题分区数大于数据源算子的并行度时,是有一些注意事项的,本文就来讲解下这些注…...

总结:JavaEE的Servlet中HttpServletRequest请求对象调用各种API方法结果示例

总结:JavaEE的Servlet中HttpServletRequest请求对象调用各种API方法结果示例 一方法调用顺序是按照英文字母顺序从A-Z二该示例可以用作servlet中request的API参考,从而知道该如何获取哪些路径参数等等三Servlet的API版本5.0.0、JSP的API版本:…...

ChatGPT AIGC 完成Excel跨多表查找操作vlookup+indirect

VLOOKUP和INDIRECT的组合在Excel中用于跨表查询,其中VLOOKUP函数用于在另一张表中查找数据,INDIRECT函数则用于根据文本字符串引用不同的工作表。具体操作如下: 1.假设在工作表1中,A列有你要查找的值,B列是你希望查询的工作表名称。 2.在工作表1的C列输入以下公式:=VLO…...

Linux系统conda虚拟环境离线迁移移植

本人创建的conda虚拟环境名为yys(每个人的虚拟环境名不一样,替换下就行) 以下为迁移步骤: 1.安装打包工具将虚拟环境打包: conda install conda-pack conda pack -n yys -o yys.tar.gz 2.将yys.tar.gz上传到服务器&…...

Vue16 绑定css样式 style样式

绑定样式: 1. class样式写法:class"xxx" xxx可以是字符串、对象、数组。字符串写法适用于:类名不确定,要动态获取。对象写法适用于:要绑定多个样式,个数不确定,名字也不确定。数组写法适用于&…...

[Spring] SpringMVC 简介(三)

目录 九、SpringMVC 中的 AJAX 请求 1、简单示例 2、RequestBody(重点关注“赋值形式”) 3、ResponseBody(经常用) 4、为什么不用手动接收 JSON 字符串、转换 JSON 字符串 5、RestController 十、文件上传与下载 1、Respo…...

kettle应用-从数据库抽取数据到excel

本文介绍使用kettle从postgresql数据库中抽取数据到excel中。 首先,启动kettle 如果kettle部署在windows系统,双击运行spoon.bat或者在命令行运行spoon.bat 如果kettle部署在linux系统,需要执行如下命令启动 chmod x spoon.sh nohup ./sp…...

Git Commit Message规范

概述 Git commit message规范是一种良好的实践,可以帮助开发团队更好地理解和维护代码库的历史记录。它可以提高代码质量、可读性和可维护性。下面是一种常见的Git commit message规范,通常被称为"Conventional Commits"规范: 一…...

Linux网络编程系列之UDP广播

Linux网络编程系列 (够吃,管饱) 1、Linux网络编程系列之网络编程基础 2、Linux网络编程系列之TCP协议编程 3、Linux网络编程系列之UDP协议编程 4、Linux网络编程系列之UDP广播 5、Linux网络编程系列之UDP组播 6、Linux网络编程系列之服务器编…...

spring中事务相关面试题(自用)

1 什么是spring事务 Spring事务管理的实现原理是基于AOP(面向切面编程)和代理模式。Spring提供了两种主要的方式来管理事务:编程式事务管理和声明式事务管理。 声明式事务管理: Spring的声明式事务管理是通过使用注解或XML配置来…...

09 | JpaSpecificationExecutor 解决了哪些问题

QueryByExampleExecutor用法 QueryByExampleExecutor(QBE)是一种用户友好的查询技术,具有简单的接口,它允许动态查询创建,并且不需要编写包含字段名称的查询。 下面是一个 UML 图,你可以看到 QueryByExam…...

Linux命令(93)之su

linux命令之su 1.su介绍 linux命令su用于变更为其它使用者的身份&#xff0c;如root用户外&#xff0c;需要输入使用者的密码 2.su用法 su [参数] user su参数 参数说明-c <command>执行指定的命令&#xff0c;然后切换回原用户-切换到目标用户的环境变量 3.实例 3…...

1.HTML-HTML解决中文乱码问题

题记 下面是html文件解决中文乱码的方法 方法一 在 HTML 文件的 <head> 标签中添加 <meta charset"UTF-8">&#xff0c;确保文件以 UTF-8 编码保存 <head> <meta charset"UTF-8"> <!-- 其他标签和内容 --> </head> --…...

Vue3 + Nodejs 实战 ,文件上传项目--实现拖拽上传

目录 1.拖拽上传的剖析 input的file默认拖动 让其他的盒子成为拖拽对象 2.处理文件的上传 处理数据 上传文件的函数 兼顾点击事件 渲染已处理过的文件 测试效果 3.总结 博客主页&#xff1a;専心_前端,javascript,mysql-CSDN博客 系列专栏&#xff1a;vue3nodejs 实战-…...

Windows:VS Code IDE安装ESP-IDF【保姆级】

物联网开发学习笔记——目录索引 参考&#xff1a; VS Code官网&#xff1a;Visual Studio Code - Code Editing. Redefined 乐鑫官网&#xff1a;ESP-IDF 编程指南 - ESP32 VSCode ESP-ID Extension Install 一、前提条件 Visual Studio Code IDE安装ESP-IDF扩展&#xf…...

Hadoop3教程(十一):MapReduce的详细工作流程

文章目录 &#xff08;94&#xff09;MR工作流程Map阶段Reduce阶段 参考文献 &#xff08;94&#xff09;MR工作流程 本小节将展示一下整个MapReduce的全工作流程。 Map阶段 首先是Map阶段&#xff1a; 首先&#xff0c;我们有一个待处理文本文件的集合&#xff1b; 客户端…...

测试中Android与IOS分别关注的点

目录 1、自身不同点 2、测试注重点 3、其他测试点 主要从本身系统的不同点、系统造成的不同点、和注意的测试点做总结 1、自身不同点 研发商&#xff1a;Adroid是google公司做的手机系统&#xff0c;IOS是苹果公司做的手机系统   开源程度&#xff1a;Android是开源的&a…...

NLG(自然语言生成)评估指标介绍

诸神缄默不语-个人CSDN博文目录 本文介绍自然语言生成任务中的各种评估指标。 因为我是之前做文本摘要才接触到这一部分内容的&#xff0c;所以本文也是文本摘要中心。 持续更新。 文章目录 1. 常用术语2. ROUGE (Recall Oriented Understudy for Gisting Evaluation)1. 计算…...

苍穹外卖(七) Spring Task 完成订单状态定时处理

Spring Task 完成订单状态定时处理, 如处理支付超时订单 Spring Task介绍 Spring Task 是Spring框架提供的任务调度工具&#xff0c;可以按照约定的时间自动执行某个代码逻辑。 应用场景: 信用卡每月还款提醒 火车票售票系统处理未支付订单 入职纪念日为用户发送通知 点外…...

【探索Linux】—— 强大的命令行工具 P.11(基础IO,文件操作)

阅读导航 前言一、C语言的文件操作二、C的文件操作三、Linux系统文件操作&#xff08;I/O接口&#xff09;1. open()⭕传入多个打开方式&#xff08;按位或操作将不同的标志位组合在一起&#xff09; 2. write()3. read()4. close()5. lseek() 温馨提示 前言 前面我们讲了C语言…...

前端练习项目(附带页面psd图片及react源代码)

一、前言 相信很多学完前端的小伙伴都想找个前端项目练练手&#xff0c;检测自己的学习成果。但是现在很多项目市面上都烂大街了。今天给大家推荐一个全新的项目——电子校园 项目位置&#xff1a;https://github.com/v5201314/eSchool 二、项目介绍(部分页面展示)&#xff…...

【从零开始学习Redis | 第三篇】在Java中操作Redis

前言&#xff1a; 本文算是一期番外&#xff0c;介绍一下如何在Java中使用Reids &#xff0c;而其实基于Java我们有很多的开源框架可以用来操作redis&#xff0c;而我们今天选择介绍的是其中比较常用的一款&#xff1a;Spring Data Redis 目录 前言&#xff1a; Spring Data…...

vim、gcc/g++、make/Makefile、yum、gdb

vim、gcc/g、make/Makefile、yum、gdb 一、Linux编辑器vim1、简介2、三种模式的概念&#xff08;1&#xff09;正常/普通/命令模式(Normal mode)&#xff08;2&#xff09;插入模式(Insert mode)&#xff08;3&#xff09;末行/底行模式(last line mode) 3、三种模式的切换4、正…...

2022最新版-李宏毅机器学习深度学习课程-P13 局部最小值与鞍点

一、优化失败的原因 局部最小值&#xff1f;鞍点&#xff1f; 二、数学推导分析 用泰勒公式展开 一项与梯度&#xff08;L的一阶导&#xff09;有关&#xff0c;一项与海赛矩阵&#xff08;L的二阶导&#xff09;有关 海瑟矩阵 VTHV通过海瑟矩阵的性质可以转为判断H是否是正…...

ARM架构的基本知识

ARM两种授权 体系结构授权, 一种硬件规范, 用来约定指令集, 芯片内部体系结构(内存管理, 高速缓存管理), 只约定每一条指令的格式, 行为规范, 参数, 客户根据这个规范自行设计与之兼容的处理器处理IP授权, ARM公司根据某个版本的体系结构设计处理器, 再把处理器设计方案授权给…...

网络安全(黑客技术)——如何高效自学

前言 前几天发布了一篇 网络安全&#xff08;黑客&#xff09;自学 没想到收到了许多人的私信想要学习网安黑客技术&#xff01;却不知道从哪里开始学起&#xff01;怎么学&#xff1f;如何学&#xff1f; 今天给大家分享一下&#xff0c;很多人上来就说想学习黑客&#xff0c…...

云原生场景下高可用架构的最佳实践

作者&#xff1a;刘佳旭&#xff08;花名&#xff1a;佳旭&#xff09;&#xff0c;阿里云容器服务技术专家 引言 随着云原生技术的快速发展以及在企业 IT 领域的深入应用&#xff0c;云原生场景下的高可用架构&#xff0c;对于企业服务的可用性、稳定性、安全性越发重要。通…...

图论-最短路径算法-弗洛伊德算法与迪杰斯特拉算法

弗洛伊德算法&#xff1a; 弗洛伊德算法本质是动态规划&#xff0c;通过添加点进如可选择的点组成的集合的同时更新所有点之间的距离&#xff0c;从而得到每两个点之间的最短距离。 初始化&#xff1a; 创建一个二维数组 dist&#xff0c;其中 dist[i][j] 表示从节点 i 到节点…...