当前位置: 首页 > news >正文

基于深度学习网络的疲劳驾驶检测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1疲劳检测理论概述

4.2 本课题说明

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

In_layer_Size  = [227 227 3];
img_size       = [224,224];
imgPath = 'Input/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:length(imgDir)          % 遍历结构体就可以一一处理图片了iif mod(i,8)==1figureendcnt     = cnt+1;subplot(2,4,cnt); img = imread([imgPath imgDir(i).name]); %读取每张图片I               = imresize(img,In_layer_Size(1:2));[bboxes,scores] = detect(detector,I);[Vs,Is] = max(scores);I2      = I(bboxes(Is,2):bboxes(Is,2)+bboxes(Is,4),bboxes(Is,1):bboxes(Is,1)+bboxes(Is,3),:);picture_resized = imresize(I2,img_size);[label, Probability] = classify(net, picture_resized);labelif isempty(bboxes)==0I1              = insertObjectAnnotation(I,'rectangle',bboxes(Is,:),Vs);elseI1              = I;Vs              = 0;endimshow(I1)if label=='YES'title('正常驾驶');elsetitle('疲劳驾驶','color','r');endif cnt==8cnt=0;end
end
70

4.算法理论概述

4.1疲劳检测理论概述

       疲劳检测的原理是根据人体疲劳状态下的特征检测,和正常状态下的特征检测做对比。在做疲劳检测之前,首先需要分析人体在疲劳状态下与正常状态下的特征有哪些不同的的表现,这些不同的表现可以通过哪些数值具体的量化出来,然后通过这些量化后的不同数值来判断属于哪种行为;最后根据获取的各种行为综合判断属于疲劳状态或者正常状态。

         基于深度学习网络的疲劳驾驶检测算法是一种利用深度学习技术对驾驶员的疲劳状态进行自动检测的方法。基于深度学习网络的疲劳驾驶检测算法主要利用了深度学习模型强大的特征提取和分类能力。具体来说,该算法通过训练一个深度学习模型,使其能够学习到疲劳驾驶状态下驾驶员面部的特征变化,从而对驾驶员的疲劳状态进行自动检测。

该算法的训练过程主要包括以下步骤:

  1. 数据收集:首先需要收集大量的驾驶员面部图像数据,包括疲劳驾驶状态下的图像和非疲劳驾驶状态下的图像。
  2. 数据预处理:对收集到的图像数据进行预处理,包括图像裁剪、归一化、去噪等操作,以便于模型的训练。
  3. 模型训练:使用预处理后的图像数据训练一个深度学习模型,使其能够学习到疲劳驾驶状态下驾驶员面部的特征变化。
  4. 模型评估:使用测试集对训练好的模型进行评估,评估指标包括准确率、召回率等。

       基于深度学习网络的疲劳驾驶检测算法的数学公式主要涉及到深度学习模型的训练和推理过程。具体来说,该算法的训练过程可以通过以下公式表示:

       Loss=f(X,Y;θ)Loss = f(X, Y; \theta)Loss=f(X,Y;θ)

       其中,Loss表示损失函数,X表示输入的图像数据,Y表示对应的标签数据,θ表示模型的参数。f表示模型的前向传播函数,用于计算模型的输出。

在模型的推理过程中,给定一张输入图像,可以通过以下公式计算模型的输出:

Y^=f(X^;θ)\hat{Y} = f(\hat{X}; \theta)Y^=f(X^;θ)

其中,Y^表示模型的输出,X^表示输入的图像数据,θ表示已经训练好的模型参数。

       总之,基于深度学习网络的疲劳驾驶检测算法通过训练一个深度学习模型,使其能够学习到疲劳驾驶状态下驾驶员面部的特征变化,从而对驾驶员的疲劳状态进行自动检测。这种方法具有准确率高、鲁棒性强等优点,为疲劳驾驶检测提供了新的思路和方法。

4.2 本课题说明

       在本课程中,我们选择Fast R-CNN对常见中人脸进行检测,在完成人脸检测之后,将检测到的人脸局部图像,通过googlenet进行高精度分类,区分出当前人脸表情是正常驾驶还是疲劳驾驶。

     基于Fast R-CNN进行人脸检测是通过使用Fast R-CNN模型对输入图像进行人脸目标检测,得到人脸的位置和大小信息。Fast R-CNN是一种目标检测模型,通过卷积神经网络提取图像特征,并使用区域提议网络(Region Proposal Network,RPN)生成候选目标区域,最后对候选区域进行分类和回归,得到目标的位置和大小信息。

        通过GoogleNet进行疲劳驾驶检测是通过使用GoogleNet模型对输入图像进行特征提取,然后利用这些特征判断驾驶员是否处于疲劳状态。GoogleNet是一种深度卷积神经网络模型,通过增加网络的深度和宽度,提高了模型的特征提取能力。利用GoogleNet提取的图像特征可以表示驾驶员面部的细节和表情变化,从而判断驾驶员是否处于疲劳状态。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于深度学习网络的疲劳驾驶检测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1疲劳检测理论概述 4.2 本课题说明 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 In_layer_Size [227 227 3]; img_size [224,…...

【文件系统】Linux文件系统的基本存储机制

Linux文件系统是Linux操作系统的重要组成部分,它负责管理计算机存储设备上的文件和目录。Linux文件系统采用类Unix的设计,具有强大的性能和可扩展性,支持多种文件系统类型,如ext4、XFS、Btrfs等。在项目存储架构的设计中&#xff…...

Outlook导入导出功能灰色,怎么解决

下载安装 Outlook 软件后,登陆账号,然后选择“文件” - “导出”,结果发现“导出”按钮是灰色的,根本无法导出。根据官方说法:由于配置没有完成或者office产品没有正确激活。outlook导出键为灰色原因由于配置没有完成或…...

Chrome 同站策略(SameSite)问题

问题产生 问题复现: A项目页面使用 iframe 引用了B项目 B项目登录页面输入账号密码后点击登录 无法跳转 尝试解决: 在B项目修改了跳转方式 但无论是 this.$router.push 还是 window.herf 都无法实现跳转在iframe中使用 sandbox 沙箱属性 同样无法实现跳…...

docker搭建nginx+php-fpm

docker run --name nginx -p 8898:80 -d nginx:1.20.2-alpine# 将容器nginx.conf文件复制到宿主机 docker cp nginx:/etc/nginx/nginx.conf /usr/local/nginx/conf/nginx.conf# 将容器conf.d文件夹下内容复制到宿主机 docker cp nginx:/etc/nginx/conf.d /usr/local/nginx/conf…...

数据结构与算法---单调栈结构

数据结构与算法---单调栈结构 1 滑动窗口问题 1 滑动窗口问题 1 滑动窗口问题 由一个代表题目,引出一种结构 【题目】 有一个整型数组 arr 和一个大小为 w 的窗口从数组的最左边滑到最右边,窗口每次向右边滑一个位置。 例如,数组为[4,3,…...

Python爬虫:某书平台的Authorization参数js逆向

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、…...

Android MediaCodec 框架 基于codec2

系列文章的目的是什么? 粗略: 解码需要哪些基础的服务?标准解码的调用流程?各个流程的作用是什么?解码框架的层次?各个层次的作用? 细化: 解码参数的配置?解码输入数…...

【RocketMQ 系列三】RocketMQ集群搭建(2m-2s-sync)

您好,我是码农飞哥(wei158556),感谢您阅读本文,欢迎一键三连哦。 💪🏻 1. Python基础专栏,基础知识一网打尽,9.9元买不了吃亏,买不了上当。 Python从入门到精…...

Go TLS服务端绑定证书的几种方式

随着互联网的发展,网站提供的服务类型和规模不断扩大,同时也对Web服务的安全性提出了更高的要求。TLS(Transport Layer Security)[1]已然成为Web服务最重要的安全基础设施之一。默认情况下,一个TLS服务器通常只绑定一个证书[2],但…...

【算法与数据结构】--高级算法和数据结构--排序和搜索

一、常见排序算法 以下是一些常见的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。每种排序算法的讲解以及附带C#和Java示例: 1.1 冒泡排序 (Bubble Sort) 讲解: 冒泡排序是一种简单的比较排序算法。它多次遍历待排序的…...

【Java】jvm 元空间、常量池(了解)

JDK1.8 以前的 HotSpot JVM 有方法区,也叫永久代(permanent generation)方法区用于存放已被虚拟机加载的类信息,常量、静态遍历,即编译器编译后的代码JDK1.7 开始了方法区的部分移除:符号引用(S…...

Spring Boot自动加载

问:自动装配如何实现的? 答:简单来说就是自动去把第三方组件的Bean装载到IOC容器中,不需要开发人员再去写Bean相关的配置,在springboot应用里面只需要在启动类上去加上SpringBootApplication注解,就可以去实…...

MPNN 模型:GNN 传递规则的实现

首先,假如我们定义一个极简的传递规则 A是邻接矩阵,X是特征矩阵, 其物理意义就是 通过矩阵乘法操作,批量把图中的相邻节点汇聚到当前节点。 但是由于A的对角线都是 0.因此自身的节点特征会被过滤掉。 图神经网络的核心是 吸周围…...

Flink kafka 数据汇不指定分区器导致的问题

背景 在flink中,我们经常使用kafka作为flink的数据汇,也就是目标数据的存储地,然而当我们使用FlinkKafkaProducer作为数据汇连接器时,我们需要注意一些注意事项,本文就来记录一下 使用kafka数据汇连接器 首先我们看…...

【软考】14.1 面向对象基本概念/分析设计测试

《面向对象开发》 对象 现实生活中实际存在的一个实体;构成系统的一个基本单位由对象名、属性和方法组成 类 实体的形式化描述;对象是类的实例,类是对象的模板可分为:实体类:现实世界中真实的实体接口类(边…...

MFC-对话框

目录 1、模态和非模态对话框: (1)、对话框的创建 (2)、更改默认的对话框名称 (3)、创建模态对话框 1)、创建按钮跳转的界面 2)、在跳转的窗口添加类 3&#xff0…...

Essential Steps in Natural Language Processing (NLP)

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...

Flink中KeyBy、分区、分组的正确理解

1.Flink中的KeyBy 在Flink中,KeyBy作为我们常用的一个聚合类型算子,它可以按照相同的Key对数据进行重新分区,分区之后分配到对应的子任务当中去。 源码解析 keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 Key…...

QT6集成CEF3--01 准备工作

QT6集成CEF3--01 准备工作 一、所有使用到的工具软件清单:二、准备工作三、cefclient示例程序四、特别注意 一、所有使用到的工具软件清单: CEF 二进制发行包 cef_binary_117.2.5gda4c36achromium-117.0.5938.152_windows64.tar.bz2 CMake 编译工具 cmake-3.22.6-windows-x86_…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

uniapp 字符包含的相关方法

在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...