数据在内存中的存储(2)
文章目录
- 3. 浮点型在内存中的存储
- 3.1 一个例子
- 3.2 浮点数存储规则
3. 浮点型在内存中的存储
常见的浮点数:
3.14159
1E10 ------ 1.0 * 10^10
浮点数家族包括: float、double、long double 类型
浮点数表示的范围:float.h中定义
3.1 一个例子
浮点数存储的例子:
#include <stdio.h>int main()
{int n = 9;float* pFloat = (float*)&n;printf("n的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);*pFloat = 9.0;printf("num的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);return 0;
}
输出的结果是什么呢?

通过输出的结果,我们可以得知:一个数以整型的形式放进去,再以整型或浮点型的形式拿出来,结果是不一样的;一个数以浮点型的形式放进去,再以整型或浮点型的形式拿出来,结果也是不一样的。因此,我们可以推出:整型和浮点型在内存中的存储方式是有差异的!
3.2 浮点数存储规则
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
- (-1)^S * M * 2^E
- (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
- M表示有效数字,大于等于1,小于2。
- 2^E表示指数位。

IEEE 754规定:
对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

IEEE 754对有效数字M和指数E,还有一些特别规定:
前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂:
首先,E为一个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0 ~ 2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
int main()
{float f = 5.5;//101.1//1.011 * 2^2//(-1)^0 * 1.011 * 2^2//S = 0//M = 1.011//E = 2//01000000101100000000000000000000//0x40b00000return 0;
}
然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)。
通过以上讲解,我们就可以解释一开始的代码了:
#include <stdio.h>int main()
{int n = 9;//00000000000000000000000000001001float* pFloat = (float*)&n;printf("n的值为:%d\n", n);//9printf("*pFloat的值为:%f\n", *pFloat);//0.000000//0 00000000 00000000000000000001001//S E M//E在内存中是全0//0 -126 0.00000000000000000001001//(-1)^0 * 0.00000000000000000001001 * 2^-126*pFloat = 9.0;//1001.0///1.001 * 2^3//(-1)^0 * 1.001 * 2^3//S=0 M=1.001 E=3//01000001000100000000000000000000printf("num的值为:%d\n", n);//1091567616printf("*pFloat的值为:%f\n", *pFloat);//9.000000return 0;
}
相关文章:
数据在内存中的存储(2)
文章目录 3. 浮点型在内存中的存储3.1 一个例子3.2 浮点数存储规则 3. 浮点型在内存中的存储 常见的浮点数: 3.14159 1E10 ------ 1.0 * 10^10 浮点数家族包括: float、double、long double 类型 浮点数表示的范围:float.h中定义 3.1 一个例…...
软件工程与计算总结(十三)详细设计中的模块化与信息隐藏
一.模块化与信息隐藏思想 1.设计质量 好的设计要着重满足以下3方面:可管理性、灵活性、可理解性好的设计需要侧重于间接性和可观察性——简洁性使得系统模块易于管理(理解和分解)、开发(修改与调试)和复用。实践者都…...
RF学习——器件的非线性失真分析
在大信号激励下的射频系统 在电路中,如果激励信号的幅度不可忽视,那么就会产生非线性失真。如二极管,晶体管等电路元件的特性在大信号激励下回变得非线性,输入和输出的形状不同,产生失真。 在功率放大器PA中,随着传输给负载的功率增大而迅速增大,传递功率的规格要始终考…...
SUB-1G SOC芯片DP4306F 32 位 ARM Cortex-M0+内核替代CMT2380F32
DP4306F是一款高性能低功耗的单片集成收发机,集成MO核MCU,工作频率可覆盖200MHiz^ 1000MHz。 支持230/408/433/470/868/915频段。该芯片集成了射频接收器、射频发射器、频率综合器、GFSK调制器、GFSK解调器等功能模块。通过SPI接口可以对输出功率、频道选…...
接收请求地址下载并输出文件流实现
代码: import httpxfrom datetime import datetime from io import BytesIO from fastapi.responses import StreamingResponse@router.get("/download", tags=["下载"]) async...
【iOS】——用单例类封装网络请求
文章目录 一、JSONModel1.JSONModel的简单介绍2.JSONModel的使用 二、单例类和Block传值 一、JSONModel 1.JSONModel的简单介绍 JSONModel一个第三方库,这个库用来将网络请求到的JSON格式的数据转化成Foundation框架下的Model类的属性,这样我们就可以直…...
再学Blazor——概述
简介 Blazor 是一种 .NET 前端 Web 框架,同时支持服务器端呈现和客户端交互性。 使用 C# 语言创建丰富的交互式 UI共享前后端应用逻辑可以生成混合桌面和移动应用受益于 .NET 的性能、可靠性和安全性需要有 HTML、CSS、JS 相关基础(开发 UI 框架的话&a…...
Ceph运维笔记
Ceph运维笔记 一、基本操作 ceph osd tree //查看所有osd情况 其中里面的weight就是CRUSH算法要使用的weight,越大代表之后PG选择该osd的概率就越大 ceph -s //查看整体ceph情况 health_ok才是正常的 ceph osd out osd.1 //将osd.1踢出集群 ceph osd i…...
RTSP协议
1 前言 RTSP协议作为音视频实时监控一个非常重要的协议,具有非常广泛的应用。RTSP由RFC 2326规范化,它允许客户端通过请求不同的媒体资源来控制流媒体服务器。RTSP是一种应用层协议,通常基于TCP连接,用于建立和控制媒体会话。这使…...
Maven系列第6篇:生命周期和插件详解?
maven系列目标:从入门开始开始掌握一个高级开发所需要的maven技能。 这是maven系列第6篇。 整个maven系列的内容前后是有依赖的,如果之前没有接触过maven,建议从第一篇看起,本文尾部有maven完整系列的连接。 前面我们使用maven…...
【通义千问】大模型Qwen GitHub开源工程学习笔记(4)-- 模型的量化与离线部署
摘要: 量化方案基于AutoGPTQ,提供了Int4量化模型,其中包括Qwen-7B-Chat和Qwen-14B-Chat。更新承诺在模型评估效果几乎没有损失的情况下,降低存储要求并提高推理速度。量化是指将模型权重和激活的精度降低以节省存储空间并提高推理速度的过程。AutoGPTQ是一种专有量化工具。…...
2022最新版-李宏毅机器学习深度学习课程-P23 为什么用了验证集结果还是过拟合
用了验证集还有可能会过拟合 这个片段可以从理论上证明这一点 以上整个挑选模型的过程也可以想象为一种训练。 把三个模型导出的最小损失公式看成一个集合,现在要做的就是在这个集合中找到某个h(此处可以视为训练),使得在验证集…...
Spring Cloud Alibaba—Sentinel 控制台安装
1、Sentinel 控制台包含如下功能: 查看机器列表以及健康情况:收集 Sentinel 客户端发送的心跳包,用于判断机器是否在线。 监控 (单机和集群聚合):通过 Sentinel 客户端暴露的监控 API,定期拉取并且聚合应用监控信息,最…...
基于动物迁徙优化的BP神经网络(分类应用) - 附代码
基于动物迁徙优化的BP神经网络(分类应用) - 附代码 文章目录 基于动物迁徙优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.动物迁徙优化BP神经网络3.1 BP神经网络参数设置3.2 动物迁徙算法应用 4.测试结果…...
一键搞定!黑群晖虚拟机+内网穿透实现校园公网访问攻略!
文章目录 前言本教程解决的问题是:按照本教程方法操作后,达到的效果是前排提醒: 1. 搭建群晖虚拟机1.1 下载黑群晖文件vmvare虚拟机安装包1.2 安装VMware虚拟机:1.3 解压黑群晖虚拟机文件1.4 虚拟机初始化1.5 没有搜索到黑群晖的解…...
【C语言】——通讯录(静态-动态增长-文件储存)
目录 前言: 一:整体框架 关于通讯录结构体的创建 二:通讯录的功能实现(静态) 2.1初始化通讯录 2.2增加联系人 2.3打印通讯录 2.4删除联系人 2.5 查找联系人 2.6修改联系人 2.7排序联系人 三:通…...
win10安装nginx及简单使用(命令)
下载 下载地址:http://nginx.org/en/download.html 使用 解压 更改配置 conf目录下nginx.conf 修改为未被占用的端口,地址改成你的地址 server {# 监听端口 listen 9010;# 地址 server_name 127.0.0.1;# 静态资源location / {root html;i…...
【农业生产系统模型】基于R语言APSIM模型进阶应用与参数优化、批量模拟实践技术
随着数字农业和智慧农业的发展,基于过程的农业生产系统模型在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农田固碳和温室气体排放等领域扮演着越来越重要的作用。APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生…...
金融数学方法:梯度下降法
1.算法介绍 梯度下降法是一种常用的优化算法,其通过沿着梯度下降的方向迭代寻找局部极小值。如果沿着梯度上升的方向迭代,就可以找到极大值。 在梯度下降法中,我们首先需要选择一个初始点 x 0 x_0 x0作为起始位置,然后计算当前位…...
1031 查验身份证
一.问题: 一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下: 首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
