[论文精读]Semi-Supervised Classification with Graph Convolutional Networks
论文原文:[1609.02907] Semi-Supervised Classification with Graph Convolutional Networks (arxiv.org)
论文代码:GitHub - tkipf/gcn: Implementation of Graph Convolutional Networks in TensorFlow
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!
1. 省流版
1.1. 心得
(1)怎么开头我就不知道在说什么啊这个论文感觉表述不是很清晰?
(2)数学部分推理很清晰
1.2. 论文框架图
2. 论文逐段阅读
2.1. Abstract
①Their convolution is based on localized first-order approximation
②They encode node features and local graph structure in hidden layers
2.2. Introduction
①The authors think adopting Laplacian regularization in the loss function helps to label:
where represents supervised loss with labeled data,
is a differentiable function,
denotes weight,
denotes matrix with combination of node feature vectors,
represents the unnormalized graph Laplacian,
is adjacency matrix,
is degree matrix.
②The model trains labeled nodes and is able to learn labeled and unlabeled nodes
③GCN achieves higher accuracy and efficiency than others
2.3. Fast approximate convolutions on graphs
①GCN (undirected graph):
where denotes autoregressive adjacency matrix, which means
,
denotes identity matrix,
denotes autoregressive degree matrix,
represents the trainable weight matrix in
-th layer,
denotes the activation matrix in
-th layer,
represents activation function
2.3.1. Spectral graph convolutions
①Spectral convolutions on graphs:
where the filter ,
comes from normalized graph Laplacian
and is the matrix of
's eigenvectors,
denotes a diagonal matrix with eigenvalues.
②However, it is too time-consuming to compute matrix especially for large graph. Ergo, approximating it in -th order by Chebyshev polynomials:
where ,
denotes Chebyshev coefficients vector,
recursive Chebyshev polynomials are with baseline
and
③Then get new function:
where ,
.
④Through this approximation method, time complexity reduced from to
2.3.2. Layer-wise linear model
①Then, the authors stack the function above to build multiple conv layers and set ,
②They simplified 2.3.1. ③ to:
where and
are free parameters
③Nevertheless, more parameters bring more overfitting problem. It leads the authors change the expression to:
where they define ,
eigenvalues are in .
But keep using it may cause exploding/vanishing gradients or numerical instabilities.
④Then they adjust
⑤The convolved signal matrix :
where denotes input channels, namely feature dimensionality of each node,
denotes the number of filters or feature maps,
represents matrix of filter parameters
2.4. Semi-supervised node classification
2.4.1. Example

2.4.2. Implementation
2.5. Related work
2.5.1. Graph-based semi-supervised learning
2.5.2. Neural networks on graphs
2.6. Experiments
2.6.1. Datasets
2.6.2. Experimental set-up
2.6.3. Baselines
2.7. Results
2.7.1. Semi-supervised node classifiication
2.7.2. Evaluation of propagation model
2.7.3. Training time per epoch
2.8. Discussion
2.8.1. Semi-supervised model
2.8.2. Limitations and future work
2.9. Conclusion
3. 知识补充
4. Reference List
Kipf, T. & Welling, M. (2017) 'Semi-Supervised Classification with Graph Convolutional Networks', ICLR 2017, doi: https://doi.org/10.48550/arXiv.1609.02907
相关文章:
[论文精读]Semi-Supervised Classification with Graph Convolutional Networks
论文原文:[1609.02907] Semi-Supervised Classification with Graph Convolutional Networks (arxiv.org) 论文代码:GitHub - tkipf/gcn: Implementation of Graph Convolutional Networks in TensorFlow 英文是纯手打的!论文原文的summari…...
CICD:使用docker+ jenkins + gitlab搭建cicd服务
持续集成解决什么问题 提高软件质量效率迭代便捷部署快速交付、便于管理 持续集成(CI) 集成,就是一些孤立的事物或元素通过某种方式集中在一起,产生联系,从而构建一个有机整体的过程。 持续,就是指长期…...
新能源电池试验中准确模拟高空环境大气压力的解决方案
摘要:针对目前新能源电池热失控和特性研究以及生产中缺乏变环境压力准确模拟装置、错误控制方法造成环境压力控制极不稳定以及氢燃料电池中氢气所带来的易燃易爆问题,本文提出了相应的解决方案。方案的关键一是采用了低漏率电控针阀作为下游控制调节阀实…...
Python 中的模糊字符串匹配
文章目录 Python中使用thefuzz模块匹配模糊字符串使用process模块高效地使用模糊字符串匹配今天,我们将学习如何使用 thefuzz 库,它允许我们在 python 中进行模糊字符串匹配。 此外,我们将学习如何使用 process 模块,该模块允许我们借助模糊字符串逻辑有效地匹配或提取字符…...
记录一个奇怪bug
一开始Weapon脚本是继承Monobehavior的,实例化后挂在gameObject上跟着角色。后来改成了不继承mono的,也不实例化。过程都是顺利的,运行也没问题,脚本编辑器也没有错误。 但偶尔有一次报了一些错误,大概是说Weapon (1)…...
SpringBoot面试题7:SpringBoot支持什么前端模板?
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:SpringBoot支持什么前端模板? Spring Boot支持多种前端模板,其中包括以下几种常用的: Thymeleaf:Thymeleaf是一种服务器端Java模板引擎,能够…...
leetcode做题笔记172. 阶乘后的零
给定一个整数 n ,返回 n! 结果中尾随零的数量。 提示 n! n * (n - 1) * (n - 2) * ... * 3 * 2 * 1 示例 1: 输入:n 3 输出:0 解释:3! 6 ,不含尾随 0示例 2: 输入:n 5 输出&a…...
linux之shell脚本练习
以下脚本已经是在ubuntu下测试的 demo持续更新中。。。 1、for 循环测试,,,Ping 局域网 #!/bin/bashi1 for i in {1..254} do# 每隔0.3s Ping 一次,每次超时时间3s,Ping的结果直接废弃ping-w 3 -i 0.3 192.168.110.$i…...
CSS阶详细解析一
CSS进阶 目标:掌握复合选择器作用和写法;使用background属性添加背景效果 01-复合选择器 定义:由两个或多个基础选择器,通过不同的方式组合而成。 作用:更准确、更高效的选择目标元素(标签)。…...
osWorkflow-1——osWorkflow官方例子部署启动运行(版本:OSWorkflow-2.8.0)
osWorkflow-1——osWorkflow官方例子部署启动运行(版本:OSWorkflow-2.8.0) 1. 前言——准备工作1.1 下载相关资料1.2 安装翻译插件 2. 开始搞项目2.1 解压 .zip文件2.2 简单小测(war包放入tomcat)2.3 导入项目到 IDE、…...
Stm32_标准库_13_串口蓝牙模块_手机与蓝牙模块通信
代码: #include "stm32f10x.h" // Device header #include "Delay.h" #include "OLED.h" #include "Serial.h"char News[100] "";uint8_t flag 1;void Get_Hc05News(char *a){uint32_t i 0…...
Unity中用序列化和反序列化来保存游戏进度
[System.Serializable]标记类 序列化 [System.Serializable]是一个C#语言中的属性,用于标记类,表示该类的实例可以被序列化和反序列化。序列化是指将对象转换为字节流的过程,以便可以将其保存到文件、数据库或通过网络传输。反序列化则是将字…...
Junit 单元测试之错误和异常处理
错误和异常处理是测试中非常重要的部分。假设我们有一个服务,该服务从数据库中获取用户。现在,我们要考虑的错误场景是:数据库连接断开。 整体代码示例 首先,为了简化,我们让服务层就是简单的类,然后使用I…...
LockSupport-park和unpark编码实战
package com.nanjing.gulimall.zhouyimo.test;import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.LockSupport;/*** author zhou* version 1.0* date 2023/10/16 9:11 下午*/ public class LockSupportDemo {public static void main(String[] args) {…...
js深拷贝与浅拷贝
1.浅拷贝概念 浅拷贝是其属性与拷贝源对象的属性共享相同引用,当你更改源或副本时,也可能(可能说的是只针对引用数据类型)导致其他对象也发生更改。 特性: 会新创建一个对象,即objobj2返回fasle…...
Docker-harbor私有仓库部署与管理
搭建本地私有仓库 #首先下载 registry 镜像 docker pull registry #在 daemon.json 文件中添加私有镜像仓库地址 vim /etc/docker/daemon.json { "insecure-registries": ["20.0.0.50:5000"], #添加,注意用逗号结…...
ArcGIS笔记8_测量得到的距离单位不是米?一经度一纬度换算为多少米?
本文目录 前言Step 1 遇到测量结果以度为单位的情况Step 2 简单的笨办法转换为以米为单位Step 3 拓展:一经度一纬度换算为多少米 前言 有时我们会遇到这种情况,想在ArcGIS中使用测量工具测量一下某一段距离,但显示的测量结果却是某某度&…...
SpringBoot入门详解
目录 因何而生的SpringBoot 单体架构的捉襟见肘 SpringBoot的优点 快速入门 高曝光率的Annotation SpringBoot的工作机制 了解SpringBootApplication SpringBootConfiguration EnableAutoConfiguration 自动配置的幕后英雄:SpringFactoriesLoader Compon…...
数据分析案例-基于snownlp模型的MatePad11产品用户评论情感分析(文末送书)
🤵♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞Ǵ…...
Leetcode刷题解析——904. 水果成篮
1. 题目链接:904. 水果成篮 2. 题目描述: 你正在探访一家农场,农场从左到右种植了一排果树。这些树用一个整数数组 fruits 表示,其中 fruits[i] 是第 i 棵树上的水果 种类 。 你想要尽可能多地收集水果。然而,农场的主…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...
解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...
