当前位置: 首页 > news >正文

[论文精读]Semi-Supervised Classification with Graph Convolutional Networks

论文原文:[1609.02907] Semi-Supervised Classification with Graph Convolutional Networks (arxiv.org)

论文代码:GitHub - tkipf/gcn: Implementation of Graph Convolutional Networks in TensorFlow

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

1. 省流版

1.1. 心得

(1)怎么开头我就不知道在说什么啊这个论文感觉表述不是很清晰?

(2)数学部分推理很清晰

1.2. 论文框架图

2. 论文逐段阅读

2.1. Abstract

        ①Their convolution is based on localized first-order approximation

        ②They encode node features and local graph structure in hidden layers

2.2. Introduction

        ①The authors think adopting Laplacian regularization in the loss function helps to label:

\mathcal{L}=\mathcal{L}_0+\lambda\mathcal{L}_{\text{reg}},\quad\\\\\text{with}\quad\mathcal{L}_{\text{reg}}=\sum_{i,j}A_{ij}\|f(X_i)-f(X_j)\|^2=f(X)^\top\Delta f(X)

where \mathcal{L}_0 represents supervised loss with labeled data, 

f\left ( \right ) is a differentiable function,

\lambda denotes weight,

X denotes matrix with combination of node feature vectors,

\triangle =D-A represents the unnormalized graph Laplacian,

A is adjacency matrix,

D is degree matrix.

        ②The model trains labeled nodes and is able to learn labeled and unlabeled nodes

        ③GCN achieves higher accuracy and efficiency than others

2.3. Fast approximate convolutions on graphs

        ①GCN (undirected graph):

H^{(l+1)}=\sigma\Big(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}\Big)

where \tilde{A} denotes autoregressive adjacency matrix, which means \tilde{A}=A+I_{N},

I_{N} denotes identity matrix,

\tilde{D} denotes autoregressive degree matrix,

W^{(l)} represents the trainable weight matrix in l-th layer,

H^{(l)} denotes the activation matrix in l-th layer,

\sigma \left ( \right ) represents activation function

2.3.1. Spectral graph convolutions

        ①Spectral convolutions on graphs:

g_{\theta }\star x=Ug_{\theta }U^{T}x

where the filter g_{\theta }=diag\left ( \theta \right ),

U comes from normalized graph Laplacian L=I_{N}-D^{-\frac12}AD^{-\frac12}=U\Lambda U^{T}and is the matrix of L's eigenvectors,

\Lambda denotes a diagonal matrix with eigenvalues.

        ②However, it is too time-consuming to compute matrix especially for large graph. Ergo, approximating it in K-th order by Chebyshev polynomials:

g_{\theta^{\prime}}(\Lambda)\approx\sum_{k=0}^K\theta_k^{\prime}T_k(\tilde{\Lambda})

where \tilde{\Lambda}=\frac{2}{\lambda_{\max}}\Lambda-I_{N},

{\theta }' denotes Chebyshev coefficients vector,

recursive Chebyshev polynomials are T_{k}\left ( x \right )=2xT_{k-1}(x)-T_{k-2}(x) with baseline T_{0}(x)=1 and T_{1}(x)=x

        ③Then get new function:

g_{\theta'}\star x\approx\sum_{k=0}^{K}\theta'_kT_k(\tilde{L})x

where \tilde{L}=\frac{2}{\lambda_{\max}}L-I_{N}(U\Lambda U^\top)^k=U\Lambda^kU^\top.

        ④Through this approximation method, time complexity reduced from O\left ( n^{2} \right ) to O\left ( E \right )

2.3.2. Layer-wise linear model

        ①Then, the authors stack the function above to build multiple conv layers and set K=1\lambda _{max}\approx 2

        ②They simplified 2.3.1. ③ to:

g_{\theta'}\star x\approx\theta'_0x+\theta'_1\left(L-I_N\right)x=\theta'_0x-\theta'_1D^{-\frac{1}{2}}AD^{-\frac{1}{2}}x

where \theta'_0 and \theta'_1 are free parameters 

        ③Nevertheless, more parameters bring more overfitting problem. It leads the authors change the expression to:

g_\theta\star x\approx\theta\left(I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\right)x

where they define \theta=\theta_0^{\prime}=-\theta_1^{\prime} ,

eigenvalues are in \left [ 0,2 \right ] .

But keep using it may cause exploding/vanishing gradients or numerical instabilities.

        ④Then they adjust I_{N}+D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\rightarrow\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}

        ⑤The convolved signal matrix \begin{aligned}Z&\in\mathbb{R}^{N\times F}\end{aligned}:

Z=\tilde{D}^{-\frac12}\tilde{A}\tilde{D}^{-\frac12}X\Theta

where C denotes input channels, namely feature dimensionality of each node,

F denotes the number of filters or feature maps,

\Theta\in\mathbb{R}^{C\times F} represents matrix of filter parameters

2.4. Semi-supervised node classification

2.4.1. Example

2.4.2. Implementation

2.5. Related work

2.5.1. Graph-based semi-supervised learning

2.5.2. Neural networks on graphs

2.6. Experiments

2.6.1. Datasets

2.6.2. Experimental set-up

2.6.3. Baselines

2.7. Results

2.7.1. Semi-supervised node classifiication

2.7.2. Evaluation of propagation model

2.7.3. Training time per epoch

2.8. Discussion

2.8.1. Semi-supervised model

2.8.2. Limitations and future work

2.9. Conclusion

3. 知识补充

4. Reference List

Kipf, T. & Welling, M. (2017) 'Semi-Supervised Classification with Graph Convolutional Networks', ICLR 2017, doi: https://doi.org/10.48550/arXiv.1609.02907

相关文章:

[论文精读]Semi-Supervised Classification with Graph Convolutional Networks

论文原文:[1609.02907] Semi-Supervised Classification with Graph Convolutional Networks (arxiv.org) 论文代码:GitHub - tkipf/gcn: Implementation of Graph Convolutional Networks in TensorFlow 英文是纯手打的!论文原文的summari…...

CICD:使用docker+ jenkins + gitlab搭建cicd服务

持续集成解决什么问题 提高软件质量效率迭代便捷部署快速交付、便于管理 持续集成(CI) 集成,就是一些孤立的事物或元素通过某种方式集中在一起,产生联系,从而构建一个有机整体的过程。 持续,就是指长期…...

新能源电池试验中准确模拟高空环境大气压力的解决方案

摘要:针对目前新能源电池热失控和特性研究以及生产中缺乏变环境压力准确模拟装置、错误控制方法造成环境压力控制极不稳定以及氢燃料电池中氢气所带来的易燃易爆问题,本文提出了相应的解决方案。方案的关键一是采用了低漏率电控针阀作为下游控制调节阀实…...

Python 中的模糊字符串匹配

文章目录 Python中使用thefuzz模块匹配模糊字符串使用process模块高效地使用模糊字符串匹配今天,我们将学习如何使用 thefuzz 库,它允许我们在 python 中进行模糊字符串匹配。 此外,我们将学习如何使用 process 模块,该模块允许我们借助模糊字符串逻辑有效地匹配或提取字符…...

记录一个奇怪bug

一开始Weapon脚本是继承Monobehavior的,实例化后挂在gameObject上跟着角色。后来改成了不继承mono的,也不实例化。过程都是顺利的,运行也没问题,脚本编辑器也没有错误。 但偶尔有一次报了一些错误,大概是说Weapon (1)…...

SpringBoot面试题7:SpringBoot支持什么前端模板?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:SpringBoot支持什么前端模板? Spring Boot支持多种前端模板,其中包括以下几种常用的: Thymeleaf:Thymeleaf是一种服务器端Java模板引擎,能够…...

leetcode做题笔记172. 阶乘后的零

给定一个整数 n ,返回 n! 结果中尾随零的数量。 提示 n! n * (n - 1) * (n - 2) * ... * 3 * 2 * 1 示例 1: 输入:n 3 输出:0 解释:3! 6 ,不含尾随 0示例 2: 输入:n 5 输出&a…...

linux之shell脚本练习

以下脚本已经是在ubuntu下测试的 demo持续更新中。。。 1、for 循环测试,,,Ping 局域网 #!/bin/bashi1 for i in {1..254} do# 每隔0.3s Ping 一次,每次超时时间3s,Ping的结果直接废弃ping-w 3 -i 0.3 192.168.110.$i…...

CSS阶详细解析一

CSS进阶 目标:掌握复合选择器作用和写法;使用background属性添加背景效果 01-复合选择器 定义:由两个或多个基础选择器,通过不同的方式组合而成。 作用:更准确、更高效的选择目标元素(标签)。…...

osWorkflow-1——osWorkflow官方例子部署启动运行(版本:OSWorkflow-2.8.0)

osWorkflow-1——osWorkflow官方例子部署启动运行(版本:OSWorkflow-2.8.0) 1. 前言——准备工作1.1 下载相关资料1.2 安装翻译插件 2. 开始搞项目2.1 解压 .zip文件2.2 简单小测(war包放入tomcat)2.3 导入项目到 IDE、…...

Stm32_标准库_13_串口蓝牙模块_手机与蓝牙模块通信

代码: #include "stm32f10x.h" // Device header #include "Delay.h" #include "OLED.h" #include "Serial.h"char News[100] "";uint8_t flag 1;void Get_Hc05News(char *a){uint32_t i 0…...

Unity中用序列化和反序列化来保存游戏进度

[System.Serializable]标记类 序列化 [System.Serializable]是一个C#语言中的属性,用于标记类,表示该类的实例可以被序列化和反序列化。序列化是指将对象转换为字节流的过程,以便可以将其保存到文件、数据库或通过网络传输。反序列化则是将字…...

Junit 单元测试之错误和异常处理

错误和异常处理是测试中非常重要的部分。假设我们有一个服务,该服务从数据库中获取用户。现在,我们要考虑的错误场景是:数据库连接断开。 整体代码示例 首先,为了简化,我们让服务层就是简单的类,然后使用I…...

LockSupport-park和unpark编码实战

package com.nanjing.gulimall.zhouyimo.test;import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.LockSupport;/*** author zhou* version 1.0* date 2023/10/16 9:11 下午*/ public class LockSupportDemo {public static void main(String[] args) {…...

js深拷贝与浅拷贝

1.浅拷贝概念 浅拷贝是其属性与拷贝源对象的属性共享相同引用,当你更改源或副本时,也可能(可能说的是只针对引用数据类型)导致其他对象也发生更改。 特性: 会新创建一个对象,即objobj2返回fasle&#xf…...

Docker-harbor私有仓库部署与管理

搭建本地私有仓库 #首先下载 registry 镜像 docker pull registry #在 daemon.json 文件中添加私有镜像仓库地址 vim /etc/docker/daemon.json { "insecure-registries": ["20.0.0.50:5000"], #添加,注意用逗号结…...

ArcGIS笔记8_测量得到的距离单位不是米?一经度一纬度换算为多少米?

本文目录 前言Step 1 遇到测量结果以度为单位的情况Step 2 简单的笨办法转换为以米为单位Step 3 拓展:一经度一纬度换算为多少米 前言 有时我们会遇到这种情况,想在ArcGIS中使用测量工具测量一下某一段距离,但显示的测量结果却是某某度&…...

SpringBoot入门详解

目录 因何而生的SpringBoot 单体架构的捉襟见肘 SpringBoot的优点 快速入门 高曝光率的Annotation SpringBoot的工作机制 了解SpringBootApplication SpringBootConfiguration EnableAutoConfiguration 自动配置的幕后英雄:SpringFactoriesLoader Compon…...

数据分析案例-基于snownlp模型的MatePad11产品用户评论情感分析(文末送书)

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

Leetcode刷题解析——904. 水果成篮

1. 题目链接:904. 水果成篮 2. 题目描述: 你正在探访一家农场,农场从左到右种植了一排果树。这些树用一个整数数组 fruits 表示,其中 fruits[i] 是第 i 棵树上的水果 种类 。 你想要尽可能多地收集水果。然而,农场的主…...

Spring Boot RESTful API

学习到接口部分了,记录一下 关于restful api感觉这篇文章讲的十分详细且通俗易懂一文搞懂什么是RESTful API - 知乎 (zhihu.com) Spring Boot 提供的 spring-boot-starter-web 组件完全支持开发 RESTful API ,提供了 GetMapping:处理get请求…...

k8s day04

昨日内容回顾: - configMap ---> cm 应用场景: 主要用于配置文件的持久化。 - secret 应用场景: 存储敏感数据,并非加密数据。 - pod探针(probe): - livenessProbe: 健康检查探针&#x…...

ESP32-IPS彩屏ST7789-Arduino-简单驱动

目的: 使ESP32能够驱动点亮ST7789显示屏 前提条件: ESP32 ST7789 (240 x240,IPS) 杜邦线 Arduino 过程: 0x00--接线 0x01--驱动: 彩屏驱动库 针对不同的彩屏驱动芯片,常用的 Arduino…...

高效工具类软件使用

高效工具类软件使用 目录概述需求: 设计思路实现思路分析1.Leanote2.Obsidian 的使用 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for…...

批处理文件(.bat)中,dir与tree命令的效果

目录 dir命令 用法 操作 效果 dir /? dir dir D:\111\111_3 dir D:\111 *.mp4 dir D:\111 /ad dir D:\111 /ar dir D:\111 /s dir D:\111\111_3 >1bat.txt dir D:\111 >>1bat.txt tree命令 用法 操作 效果 tree /? tree tree D:\111\111_3 tree…...

STM32 ---- 再次学习STM32F103C8T6/STM32F409IGT6

目录 一、环境搭建及介绍 关于STM32基础介绍 新建工程 外设案例 LED流水灯 蜂鸣器 上拉电阻和下拉电阻知识 电压比较器 c语言基础知识 类型、结构体、枚举 类型int8_t int16_t int32_t 宏替换 #define 和typedef用法 结构体两种填充方法 和 命名规则 枚举用法 常用…...

UE4 EQS环境查询 学习笔记

EQS环境查询对应Actor的范围 EQS环境查询查询对应的类 查询到即有一个蓝色的球在Actor上,里面有位置信息等等 在行为树运行EQS,按键(‘)可以看到Player的位置已经被标记 运行对应的EQS在这里放如EQS就可以了 Generated Point&…...

计算机算法分析与设计(11)---贪心算法(活动安排问题和背包问题)

文章目录 一、贪心算法概述二、活动安排问题2.1 问题概述2.2 代码编写 三、背包问题3.1 问题描述3.2 代码编写 一、贪心算法概述 1. 贪心算法的定义:贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以…...

shell命令以及运行原理

Linux严格意义上说的是一个操作系统,我们称之为“核心(kernel)“ ,但我们一般用户,不能直接使用kernel。 而是通过kernel的“外壳”程序,也就是所谓的shell,来与kernel沟通。如何理解&a…...

MySQL进阶(再论JDBC)——JDBC编程思想的分析 JDBC的规范架构 JDBC相关的类分析

前言 SQL(Structured Query Language)是一种用于管理关系型数据库的标准化语言,它用于定义、操作和管理数据库中的数据。SQL是一种通用的语言,可以用于多种关系型数据库管理系统(RDBMS),如MySQ…...

大唐工作室 网站制作/吉林黄页电话查询

题意:给定一个分数,问用分子为1的分数加和来构成这个分数有多少种方式。要求每种情况分数的个数不超过n,分母乘积不超过a。 思路:搜索。一开始做犯了一个错误导致一直TLE,就是把当前分数和的分子和分母存为全局变量&a…...

wordpress设置安全/成都网站seo外包

2019独角兽企业重金招聘Python工程师标准>>> 对工具类的功能来说,与其在微信中找各种接口不如直接调用其他wap站更好,(http://r2.mo.baidu.com/webapp_html.php?version4_0&fnwebpage_flash)有一些wap站可以参考&…...

网站设计风格的关键词/近几年的网络营销案例

LINUX指令认识 使用XShell远程登录LINUx 查看Linux的ip ifconfig 1.ls[选项][目录文件] 对于目录,列出目录下所以子目录与文件。对于文件,列出文件名以及其他信息 -a 列出目录下的所有文件,包括以 . 开头的隐含文件。 -d 将目录象文件一样显示…...

做网站来钱快/医院线上预约

#include #include #include #include //#include /*屏幕操作函数*/#define MAX 50//#define NULL 0typedef struct node1{int school; /*学校编号*/int record; /*项目成绩*/struct node1 *next; /*链域*/}Schools;typedef struct {int item; /*项目编号*/Schools *firstschoo…...

css做电商网站首页/分销平台

CListCtrl删除所有列&#xff1a; int int_itemcount m_CListCtrl1. GetHeaderCtrl()->GetItemCount ();for(int nIndex0; nIndex<int_itemcount ;nIndex) {m_CListCtrl1.DeleteColumn (0);}转载于:https://www.cnblogs.com/bibo/p/3897843.html...

女生做网站编辑好吗/网站收录有什么用

最近进行性能排查的时候发现一个怪事&#xff1a;用php-memcache&#xff0c;缓存命中率越高CPU反而占用越大。联想起之前用Xcache进行载入速度排除测试时也出现此问题&#xff0c;不禁疑惑了&#xff1a;不是说缓存命中率越高越好么&#xff1f;怎么变成烧CPU了&#xff1f;今…...