【大数据】大数据Hadoop生态圈
文章目录
- 大数据Hadoop生态圈-组件介绍
- 1、HDFS(分布式文件系统)
- 2、MapReduce(分布式计算框架)
- 3、Spark(分布式计算框架)
- 4、Flink(分布式计算框架)
- 5、Yarn/Mesos(分布式资源管理器)
- 6、Zookeeper(分布式协作服务)
- 7、Sqoop(数据同步工具)
- 8、Hive/Impala(基于Hadoop的数据仓库)
- 9、HBase(分布式列存储数据库)
- 10、Flume(日志收集工具)
- 11、Kafka(分布式消息队列)
- 12、Oozie(工作流调度器)
大数据Hadoop生态圈-组件介绍
Hadoop起源于Apache Nutch项目,始于2002年,是Apache Lucene的子项目之一 。2004年,Google在“操作系统设计与实现”(Operating System Design andImplementation,OSDI)会议上公开发表了题为MapReduce:Simplified Data Processing on Large Clusters(Mapreduce:简化大规模集群上的数据处理)的论文之后,受到启发的Doug Cutting等人开始尝试实现MapReduce计算框架,并将它与NDFS(Nutch Distributed File System)结合,用以支持Nutch引擎的主要算法。由于NDFS和MapReduce在Nutch引擎中有着良好的应用,所以它们于2006年2月被分离出来,成为一套完整而独立的软件,并被命名为Hadoop。到了2008年年初,hadoop已成为Apache的顶级项目,包含众多子项目,被应用到包括Yahoo在内的很多互联网公司。
Hadoop是目前应用最为广泛的分布式大数据处理框架,其具备可靠、高效、可伸缩等特点。
Hadoop的核心组件是HDFS、MapReduce。随着处理任务不同,各种组件相继出现,丰富Hadoop生态圈,目前生态圈结构大致如图所示:
根据服务对象和层次分为:数据来源层、数据传输层、数据存储层、资源管理层、数据计算层、任务调度层、业务模型层。接下来对Hadoop生态圈中出现的相关组件做一个简要介绍。
1、HDFS(分布式文件系统)
HDFS是整个hadoop体系的基础,负责数据的存储与管理。HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。
client:切分文件,访问HDFS时,首先与NameNode交互,获取目标文件的位置信息,然后与DataNode交互,读写数据
NameNode:master节点,每个HDFS集群只有一个,管理HDFS的名称空间和数据块映射信息,配置相关副本信息,处理客户端请求。
DataNode:slave节点,存储实际数据,并汇报状态信息给NameNode,默认一个文件会备份3份在不同的DataNode中,实现高可靠性和容错性。
Secondary NameNode:辅助NameNode,实现高可靠性,定期合并fsimage和fsedits,推送给NameNode;紧急情况下辅助和恢复NameNode,但其并非NameNode的热备份。
Hadoop 2为HDFS引入了两个重要的新功能 ——Federation和高可用(HA):
Federation允许集群中出现多个NameNode,之间相互独立且不需要互相协调,各自分工,管理自己的区域。 DataNode 被用作通用的数据块存储设备。每个 DataNode 要向集群中所有NameNode 注册,并发送心跳报告,执行所有 namenode的命令。
HDFS中的高可用性消除了Hadoop 1中存在的单点故障,其中,NameNode故障将导致集群中断。HDFS的高可用性提供故障转移功能(备用节点从失败的主NameNode接管工作的过程)以实现自动化。
2、MapReduce(分布式计算框架)
MapReduce是一种基于磁盘的分布式并行批处理计算模型,用于处理大数据量的计算。其中Map对应数据集上的独立元素进行指定的操作,生成键-值对形式中间,Reduce则对中间结果中相同的键的所有值进行规约,以得到最终结果。
Jobtracker:master节点,只有一个,管理所有作业,任务/作业的监控,错误处理等,将任务分解成一系列任务,并分派给Tasktracker。
Tacktracker:slave节点,运行 Map task和Reduce task;并与Jobtracker交互,汇报任务状态。
Map task:解析每条数据记录,传递给用户编写的map()函数并执行,将输出结果写入到本地磁盘(如果为map—only作业,则直接写入HDFS)。
Reduce task:从Map 它深刻地执行结果中,远程读取输入数据,对数据进行排序,将数据分组传递给用户编写的Reduce()函数执行。
3、Spark(分布式计算框架)
Spark是一种基于内存的分布式并行计算框架,不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器
Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
Driver: 运行Application 的main()函数
Executor:执行器,是为某个Application运行在worker node上的一个进程
Spark将数据抽象为RDD(弹性分布式数据集),内部提供了大量的库,包括Spark Core、Spark SQL、Spark Streaming、MLlib、GraphX。 开发者可以在同一个应用程序中无缝组合使用这些库。
Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的
Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。
Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据,通过短时批处理实现的伪流处理。
MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。
GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作
4、Flink(分布式计算框架)
Flink是一个基于内存的分布式并行处理框架,类似于Spark,但在部分设计思想有较大出入。对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已。
Flink VS Spark
Spark中,RDD在运行时是表现为Java Object,而Flink主要表现为logical plan。所以在Flink中使用的类Dataframe api是被作为第一优先级来优化的。但是相对来说在spark RDD中就没有了这块的优化了。
Spark中,对于批处理有RDD,对于流式有DStream,不过内部实际还是RDD抽象;在Flink中,对于批处理有DataSet,对于流式我们有DataStreams,但是是同一个公用的引擎之上两个独立的抽象,并且Spark是伪流处理,而Flink是真流处理。
5、Yarn/Mesos(分布式资源管理器)
YARN是下一代MapReduce,即MRv2,是在第一代MapReduce基础上演变而来的,主要是为了解决原始Hadoop扩展性较差,不支持多计算框架而提出的。
Mesos诞生于UC Berkeley的一个研究项目,现已成为Apache项目,当前有一些公司使用Mesos管理集群资源,比如Twitter。与yarn类似,Mesos是一个资源统一管理和调度的平台,同样支持比如MR、steaming等多种运算框架。
6、Zookeeper(分布式协作服务)
解决分布式环境下的数据管理问题:统一命名,状态同步,集群管理,配置同步等。
Hadoop的许多组件依赖于Zookeeper,它运行在计算机集群上面,用于管理Hadoop操作。
7、Sqoop(数据同步工具)
Sqoop是SQL-to-Hadoop的缩写,主要用于传统数据库和Hadoop之前传输数据。数据的导入和导出本质上是Mapreduce程序,充分利用了MR的并行化和容错性。
Sqoop利用数据库技术描述数据架构,用于在关系数据库、数据仓库和Hadoop之间转移数据。
8、Hive/Impala(基于Hadoop的数据仓库)
Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行。通常用于离线分析。
HQL用于运行存储在Hadoop上的查询语句,Hive让不熟悉MapReduce开发人员也能编写数据查询语句,然后这些语句被翻译为Hadoop上面的MapReduce任务。
Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C ++和Java编写的开源软件。 与Apache Hive不同,Impala不基于MapReduce算法。 它实现了一个基于守护进程的分布式架构,它负责在同一台机器上运行的查询执行的所有方面。因此执行效率高于Apache Hive。
9、HBase(分布式列存储数据库)
HBase是一个建立在HDFS之上,面向列的针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。
HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。
HBase提供了对大规模数据的随机、实时读写访问,同时,HBase中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。
10、Flume(日志收集工具)
Flume是一个可扩展、适合复杂环境的海量日志收集系统。它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。
同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。
Flume以Agent为最小的独立运行单位,一个Agent就是一个JVM。单个Agent由Source、Sink和Channel三大组件构成
Source:从客户端收集数据,并传递给Channel。
Channel:缓存区,将Source传输的数据暂时存放。
Sink:从Channel收集数据,并写入到指定地址。
Event:日志文件、avro对象等源文件。
11、Kafka(分布式消息队列)
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。实现了主题、分区及其队列模式以及生产者、消费者架构模式。
生产者组件和消费者组件均可以连接到KafKa集群,而KafKa被认为是组件通信之间所使用的一种消息中间件。KafKa内部氛围很多Topic(一种高度抽象的数据结构),每个Topic又被分为很多分区(partition),每个分区中的数据按队列模式进行编号存储。被编号的日志数据称为此日志数据块在队列中的偏移量(offest),偏移量越大的数据块越新,即越靠近当前时间。生产环境中的最佳实践架构是Flume+KafKa+Spark Streaming。
12、Oozie(工作流调度器)
Oozie是一个可扩展的工作体系,集成于Hadoop的堆栈,用于协调多个MapReduce作业的执行。它能够管理一个复杂的系统,基于外部事件来执行,外部事件包括数据的定时和数据的出现。
Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。
Oozie使用hPDL(一种XML流程定义语言)来描述这个图。
相关文章:

【大数据】大数据Hadoop生态圈
文章目录大数据Hadoop生态圈-组件介绍1、HDFS(分布式文件系统)2、MapReduce(分布式计算框架)3、Spark(分布式计算框架)4、Flink(分布式计算框架)5、Yarn/Mesos(分布式资源…...

python读取tif图像+经纬度
python读取tif的包很多,但大都只能读出图像像素值,不能读取到经纬度信息。原因:TIFF 简单理解就是一种图像格式,类似于 jpg、png 等。GeoTIFF 就是在普通 TIFF 文件上增加了地理位置、投影信息、坐标信息等,常用于遥感…...

Kali安装配置vulhub
一、vulhubVulhub是一个基于docker和docker-compose的漏洞环境集合,进入对应目录并执行一条语句即可启动一个全新的漏洞环境,主要利用于漏洞复现。Vulhub的官方地址为www.vulhub.org。二、搭建vulhub靶场2.1 开启kali虚拟机2.2 安装docker先更新一下软件…...

【进击的算法】动态规划——不同维度的背包问题
文章目录前言动态规划的维度二维动规leetcode416、分割等和子集leetcode1049. 最后一块石头的重量 IIleetcode494、目标和三维动规leetcode474. 一和零结语前言 大家好久不见,这次我们一起来学习一下动态规划中怎么确定维度,和对应问题如何解决。 动态…...

udiMagic 导入 Excel to Tally ERP Crack
关于 udiMagic 软件 udiMagic 是一款可帮助您快速轻松地将数据导入 Tally ERP 的应用程序。它由 Shweta Softwares 创建和分发,于2007 年首次推出。 您可以在 USB 闪存驱动器 [旅行许可证] 中携带 udiMagic,并在具有任何 Tally 版本的任何计算机上使用…...

Redis实现分页和多条件模糊查询方案
导言 Redis是一个高效的内存数据库,它支持包括String、List、Set、SortedSet和Hash等数据类型的存储,在Redis中通常根据数据的key查询其value值,Redis没有模糊条件查询,在面对一些需要分页、排序以及条件查询的场景时(如评论&…...

【H5 | CSS | JS】如何实现网页打字机效果?快收下这份超详细指南(附源码)
💂作者简介: THUNDER王,一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学会计学专业大二本科在读,同时任汉硕云(广东)科技有限公司ABAP开发顾问。在学习工作中,我通常使用偏后…...

Airbyte,数据集成的未来
Gartner 曾预计,到 2025 年,80% 寻求扩展数字业务的组织将失败。因为他们没有采用现代方法来进行数据和分析治理。数据生态是基础架构生态的最重要一环,数据的处理分发与计算,从始至终贯穿了整个数据流通生态。自从数据集中在数据…...

00.内容安排
内容安排如下01.Linux基本命令0.2 vim编辑器,gcc、gdb、makefile、动/静态库制作使用03.文件 I/O 常用函数、文件读写原理、进程控制快概念、阻塞、非阻塞概念04.文件常用操作函数、目录常用操作函数、重定向05.进程控制fork、exec函数组、进程回收 wait/waitpid06.…...

FreeRTOS任务基础知识
单任务和多任务系统单任务系统单任务系统的编程方式,即裸机的编程方式,这种编程方式的框架一般都是在main()函数中使用一个大循环,在循环中顺序的执行相应的函数以处理相应的事务,这个大循环的部分可以视为…...

JDBC-API详解、SQL注入演示、连接池
文章目录JDBC1,JDBC概述1.1 JDBC概念1.2 JDBC本质1.3 JDBC好处2,JDBC快速入门2.1 编写代码步骤2.2 具体操作3,JDBC API详解3.1 DriverManager3.2 Connection (事务归我管)3.2.1 获取执行对象3.2.2 事务管理3.3 Stateme…...

C 学习笔记 —— 动态分配内存(malloc)
文章目录分配内存malloccallocrealloc创建数组方式free的重要性举例常见动态分配内存错误忘记检查所请求的内存对NULL指针进行解引用对分配的内存越界访问释放一块内存后,继续使用释放一块内存的一部分是不允许的内存泄漏分配内存 当一个数组声明时,需要…...

RK3588通用布线设计指南
(1)走线长度应包含过孔和封装。(2)由于表贴器件的焊盘会导致阻抗降低,为减小阻抗突变的影响,建议在表贴焊盘的正下方按焊盘大小挖去一层参考层。常用的表贴器件有:电容、 ESD、共模抑制电感、连…...

ChatGPT也懂如何设计开发板!?
到底应该如何设计一款开发板?我们问了一下最近风很大的ChatGPT,得出了这样的回答: 或者这样的回答: 显而易见,RK3568开发板是一款功能丰富,性能优异,易于开发的高性能开发板,适用于各…...

去了字节跳动,才知道年薪40W的测试居然有这么多?
今年大环境不好,内卷的厉害,薪资待遇好的工作机会更是难得。最近脉脉职言区有一条讨论火了: 哪家互联网公司薪资最‘厉害’? 下面的评论多为字节跳动,还炸出了很多年薪40W的测试工程师 我只想问一句,现在的…...

2023前端面试知识点总结
原型 JavaScript中的对象都有一个特殊的 prototype 内置属性,其实就是对其他对象的引用 几乎所有的对象在创建时 prototype 属性都会被赋予一个非空的值,我们可以把这个属性当作一个备用的仓库 当试图引用对象的属性时会出发get操作,第一步时…...

FL StudioV21电脑版水果编曲音乐编辑软件
这是一款功能十分丰富和强大的音乐编辑软件,能够帮助用户进行编曲、剪辑、录音、混音等操作,让用户能够全面地调整音频。FL水果最新版是一款专业级别的音乐编曲软件,集合更多的编曲功能为一身,可以进行录音、编辑、制作、混音、调…...

【数据结构初阶】实现顺序表的简单功能
目录一.线性表和顺序表的概念二.顺序表的实现1.动态顺序表的创建2.初始化顺序表3.打印顺序表4.销毁顺序表5.检查容量6.头插 尾插7.头删 尾删三.使用下标插入删除1.删除指定位置2.向指定位置插入指定数一.线性表和顺序表的概念 线性表是n个具有相同特性的数据元素的有限序列。 线…...

华为OD机试题,用 Java 解【停车场车辆统计】问题
最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...

Linux中使用Docker部署Mysql数据库
前言 和朋友一起搞一个项目,分了一下工作,但是mysql迟迟安装不上,程序都在一个环境里确实容易出现很多问题,浪费时间和经历在这些配置上,好在有docker了,就在docker里搭建一个Mysql数据库使用吧࿰…...

JPDA(远程调试)使用步骤
JPDA(Java Plateform Debugger Architecture) 更改启动脚本 vi catalina.sh 127行 CATALINA_OPTS “-Xdebug -Xrunjdwp:transportdt_socket,servery,suspendn,address5888” 指定端口,默认是8000 377行以jpda方式启动tomcat ./catalina.sh jpda start tomcat以这个…...

磷脂-聚乙二醇-丙烯酸酯;DSPE-PEG-AC试剂说明;DSPE-PEG-Acrylate科研用
中文名称:磷脂-聚乙二醇-丙烯酸酯 丙烯酸酯-聚乙二醇-磷脂 简称:DSPE-PEG-AC;DSPE-PEG-Acrylate 溶剂:溶于部分常规有机溶剂 PEG分子量:1000;2000;3400;5000等等 注意事项:避免…...

C++入门:异常处理
异常是程序在执行期间产生的问题。C 异常是指在程序运行时发生的特殊情况,比如尝试除以零的操作。异常提供了一种转移程序控制权的方式。C 异常处理涉及到三个关键字:try、catch、throw。throw: 当问题出现时,程序会抛出一个异常。这是通过使…...

C/C++每日一练(20230225)
目录 1. 工龄问题求解 ★ 2. 字符图形输出 ★★ 3. LRU 缓存机制 ★★★ 1. 工龄问题求解 给定公司N名员工的工龄,要求按工龄增序输出每个工龄段有多少员工。输入首先给出正整数N,即员工总人数; 随后给出N个整数,即每个员工…...

nyist最终淘汰赛第一场
我出的题喜欢吗 我要水题解所以每一篇题解都分一个博客 A 题解链接: Atcoder abc257 E_霾まる的博客-CSDN博客 构造贪心题 在本次淘汰赛中较难 B 题解链接: atcoder abc217 D_霾まる的博客-CSDN博客 STL二分题, 当然你可以数组二分, 相对麻烦一点 在本次淘汰赛中较简单…...

《零成本实现Web自动化测试--基于Selenium》 Selenium-RC
一. 简介 Selenium-RC可以适应更复杂的自动化测试需求,而不仅仅是简单的浏览器操作和线性执行。Selenium-RC能够充分利用编程语言来构建更复杂的自动化测试案例,例如读写文件、查询数据库和E-mail邮寄测试报告。 当测试案例遇到selenium-IDE不支持的逻辑…...

来阿里我的收获是什么?(未完待续)
不知不觉来阿里两年多了,每天都过的很充实,感觉这段时间没有学到什么东西,但是又觉得收获满满,恰好又好久没有动笔写过些什么了,所以有了这个动笔念头。 之前技术方面记录的比较多,这次就记录一些比较磨心的…...

golang net/http库的学习
net/http 是 Golang 标准库中用来构建 HTTP 服务器和客户端的包,它提供了很多功能强大的方法和接口,可以让您方便地构建和处理 HTTP 请求和响应。下面是一些学习 net/http 的建议: 了解 HTTP 协议。在学习 net/http 之前,建议先了…...

Spring(AOP)
目录 1. 预备知识-动态代理 1.1 什么是动态代理1.2 动态代理的优势1.3 基于JDK动态代理实现2. AOP 2.1 基本概念2.2 AOP带来的好处3. Spring AOP 3.1 前置通知3.2 后置通知3.3 环绕通知3.4 异常通知3.5 适配器 1. 预备知识-动态代理 1.1 什么是动态代理 动态代理利用Java的反…...

服务搭建篇(六) Kafka + Zookeeper集群搭建
一.Zookeeper 1.什么是Zookeeper ZooKeeper 是一个开源的分布式协调框架,是Apache Hadoop 的一个子项目,主要 用来解决分布式集群中应用系统的一致性问题。Zookeeper 的设计目标是将那些复杂且容 易出错的分布式一致性服务封装起来,构成一个…...