当前位置: 首页 > news >正文

SQL95 从 Products 表中检索所有的产品名称以及对应的销售总数

描述

Products 表中检索所有的产品名称:prod_name、产品id:prod_id

prod_id

prod_name

a0001

egg

a0002

sockets

a0013

coffee

a0003

cola

OrderItems代表订单商品表,订单产品:prod_id、售出数量:quantity

prod_id

quantity

a0001

105

a0002

1100

a0002

200

a0013

1121

a0003

10

a0003

19

a0003

5

【问题】

编写 SQL 语句,从 Products 表中检索所有的产品名称(prod_name),以及名为 quant_sold 的计算列,其中包含所售产品的总数(在 OrderItems 表上使用子查询和 SUM(quantity)检索)。

【示例结果】返回产品名称prod_name和产品售出数量总和

prod_name

quant_sold

egg

105

sockets

1300

coffee

1121

cola

34

【示例解析】prod_name是cola的prod_id为a0003,quantity总量为34,返回结果无需排序。

示例1

输入:

DROP TABLE IF EXISTS `Products`;

CREATE TABLE IF NOT EXISTS `Products` (

`prod_id` VARCHAR(255) NOT NULL COMMENT '产品 ID',

`prod_name` VARCHAR(255) NOT NULL COMMENT '产品名称'

);

INSERT INTO `Products` VALUES ('a0001','egg'),

('a0002','sockets'),

('a0013','coffee'),

('a0003','cola');

DROP TABLE IF EXISTS `OrderItems`;

CREATE TABLE IF NOT EXISTS `OrderItems`(

prod_id VARCHAR(255) NOT NULL COMMENT '产品id',

quantity INT(16) NOT NULL COMMENT '商品数量'

);

INSERT `OrderItems` VALUES ('a0001',105),('a0002',1100),('a0002',200),('a0013',1121),('a0003',10),('a0003',19),('a0003',5);

复制

输出:

egg|105.000

sockets|1300.000

coffee|1121.000

cola|34.000

答案

select t1.prod_name,round(sum(t2.quantity),3) as quant_sold 
from Products t1,OrderItems t2
where t1.prod_id=t2.prod_id
group by t1.prod_name

相关文章:

SQL95 从 Products 表中检索所有的产品名称以及对应的销售总数

描述 Products 表中检索所有的产品名称:prod_name、产品id:prod_idprod_idprod_namea0001egga0002socketsa0013coffeea0003colaOrderItems代表订单商品表,订单产品:prod_id、售出数量:quantityprod_idquantitya0001105…...

平时技术积累很少,面试时又会问很多这个难题怎么破?别慌,没事看看这份Java面试指南,解决你的小烦恼!

前言技术面试是每个程序员都需要去经历的事情,随着行业的发展,新技术的不断迭代,技术面试的难度也越来越高,但是对于大多数程序员来说,工作的主要内容只是去实现各种业务逻辑,涉及的技术难度并不高&#xf…...

SQL Server 数据库的备份

为何要备份数据库? 备份 SQL Server 数据库、在备份上运行测试还原过程以及在另一个安全位置存储备份副本可防止可能的灾难性数据丢失。 备份是保护数据的唯一方法 。 使用有效的数据库备份,可从多种故障中恢复数据,例如: 介质…...

NCNN Conv量化详解1

1. NCNN的Conv量化计算流程 正常的fp32计算中,一个Conv的计算流程如下: 在NCNN Conv进行Int8计算时,计算流程如下: NCNN首先将输入(bottom_blob)和权重(weight_blob)量化成INT8,在INT8下计算卷积,然后反量化到fp32,再和未量化的bias相加,得到输出(top_blob) 输入和…...

Redis大key多key拆分方案

业务场景中经常会有各种大key多key的情况, 比如:1:单个简单的key存储的value很大2:hash, set,zset,list 中存储过多的元素(以万为单位)3:一个集群存储了上亿的…...

python的类如何使用?兔c同学一篇关于python类的博文概述

本章内容如目录 所示: 文章目录1. 创建和使用类1.1 创建第一个python 类1.2 版本差异1.3 根据类创建实例1. 访问属性2. 调用方法3. 创建多个实例2. 使用类和实例2.1 给属性指定默认值2.2 修改属性的值3. 继承3.1 子类的 __init __()3.2 给子类定义属性和方法3.3 重写…...

Day60 动态规划总结

647. 回文子串 回文的做法注定我们得从里面入手,逐渐扩散到边界 初始化:准备一个ans,找到一个回文子串加一个 dp [[0] * n for _ in range(n)]ans 0 遍历公式: 当s[i]s[j]的时候,只要里面还是回文串,就能…...

UVM仿真环境搭建

环境 本实验使用环境为: Win10平台下的Modelsim SE-64 2019.2 代码 dut代码: module dut(clk,rst_n, rxd,rx_dv,txd,tx_en); input clk; input rst_n; input[7:0] rxd; input rx_dv; output [7:0] txd; output tx_en;reg[7:0] txd; reg tx_en;always…...

Azure AI基础到实战(C#2022)-认知服务(1)

目录 Azure 认知服务概述计算机视觉概述数据隐私和安全性计算机视觉快速入门光学字符识别 (OCR)OCR APIOCR 常用功能Azure 门户准备两种部署方式OCR项目实战之车牌识别Azure 认知服务概述 Azure 认知服务是基于云的人工智能 (AI) 服务,可帮助开发人员在不具备直接的 AI 或数据…...

光栅化Triangles(笔记)

field of view (可见区域) 该角度越大,需要透视投影的角度越大,成像显示的内容越多 有Y值,则可得出成像范围 屏幕: 典型的光栅处理设备所有像素都被表示为x,y坐标轴形式 3D方块成像步骤: 先将其所在平面化为 与屏幕等长等宽的形式: 如何将一个三角形拆成像素?采样…...

【Oarcle】如何显示日本年号的日期格式 ?

语句大于一切,还需要语言吗? 1. SELECT TO_CHAR(SYSDATE,EEYY/MM/DD,NLS_CALENDAR JAPANESE IMPERIAL) from dual;结果是: 令和05/02/25 Oracle SQL文中,年月日的显示,一定要使用双引号括起来,如 select…...

57_Pandas中的json_normalize将字典列表转换为DataFrame

57_Pandas中的json_normalize将字典列表转换为DataFrame 可以使用 pandas.json_normalize() 将具有公共键的字典列表转换为 pandas.DataFrame。 由于它是一种常用的JSON格式,可以通过Web API获取,所以能够将其转换为pandas.DataFrame是非常方便的。 在…...

OpenAPI SDK组件之javassist字节码

javassist介绍 Javassist是一个开源的分析、编辑和创建Java字节码的类库,主要优点是简单,不需要了解虚拟机指令,就能动态改变类的结构,或者动态生成类。 apisdk应用javassist 在apisdk中主要依靠javassist增强开发者声明的开放…...

【LeetCode】1247. 交换字符使得字符串相同(超级简单的算法,击败100%)

有两个长度相同的字符串 s1 和 s2,且它们其中 只含有 字符 "x" 和 "y",你需要通过「交换字符」的方式使这两个字符串相同。 每次「交换字符」的时候,你都可以在两个字符串中各选一个字符进行交换。 交换只能发生在两个…...

23. 合并K个升序链表

解题思路:两种解法,一种优先级队列,一种分治优先级队列解法:以节点中存储的值进行排序依次遍历所有的链表,把链表中的节点加入到优先级队列中依次从优先级队列的弹出并删除最小的元素加入到新的链表中,直到…...

软中断与tasklet简介

一、软中断 1.1 何为软中断? ​ Linux 系统为了解决中断处理程序执行过长的问题,将中断过程分成了两个阶段,分别是「上半部(Top Half)和下半部分(Bottom Half)」。 上半部用来快速处理中断。一…...

JUC 之 线程阻塞工具 LockSupport

——LockSupport 与 线程中断 线程中断机制 一个线程不应该由其他线程来强制中断或停止,而是应该由线程自己自行停止,所以,Thread.stop,Thread.suspend,Thread.resume 都已经被废弃 在 Java 中没有办法立即停止一条线…...

常用数据结构总结-Java版

常用数据结构总结(Java版) C/Java/Python 数据结构大比较 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Dokzp1HQ-1677329125447)(assets/image-20220116142815859.png)] array 同一种类型数据的集合,其实数组…...

【基础算法】二分例题(我在哪?)

🌹作者:云小逸 📝个人主页:云小逸的主页 📝Github:云小逸的Github 🤟motto:要敢于一个人默默的面对自己,强大自己才是核心。不要等到什么都没有了,才下定决心去做。种一颗树,最好的时间是十年前…...

怕上当?来看这份网络钓鱼和诈骗技术趋势

网络钓鱼和诈骗:当前的欺诈类型 网络钓鱼 钓鱼者可以攻击任何在线服务——银行、社交网络、政府门户网站、在线商店、邮件服务、快递公司等——中的证书。但是,顶级品牌的客户往往面临更大风险,因为相比小品牌,人们更喜欢使用和…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...