人脸识别测试数据分析
一个人脸识别研究小组对若干名学生做了人脸识别的测试,将测试结果写入到一个文件 dir_50.txt 中,每一行是一张照片的识别结果+“_照片编号”+“.jpg”的字符串组合,示例如下:
['1709020621', '0']_116.jpg
['1709020621']_115.jpg
['1770603107', '1770603105', '0', '0']_1273.jpg
其中,识别结果是一个列表形式的字符串,方括号中是识别出的学生学号字符串,如果识别出了照片中的多个人,就会包含多个学号字符串;如果检测到了一个人脸但没有识别出学号,则以字符串‘0’表示;测试过程中,一个学生可能被抓拍到多张照片中,所以学生的学号会出现在多行信息中。
使用字典和列表进行数据分析,获取实际参加测试的学生人数和人均被检测次数。
(1)读入 dir_50.txt 文件的内容,处理每一行信息。将其中的学号内容以列表形式保存,丢掉‘0’的字串;照片编号作为字典的关键字,学号列表作为字典的值。转换后示例如下:
'116':[1709020621]
'115':[1709020621]
'117':[1709020621]
'1273':[1770603107,1770603105]
(2)将该字典中的学号提取出来,构造另一个字典,以学号作为字典的关键字,累计学号出现的次数,将累计值作为字典的值。格式示例如下:
'1709020621':3
'1770603107':1
'1770603105':1
(3)累计字典中关键字的个数,即为实际参加测试的学生人数;累加每个关键字对应的值,即为所有学号测试次数;所有学号测试次数与实际测试人数之比,即为人均被测次数。将实际参加测试人数和人均被测次数显示输出在屏幕上。
示例1:
输入: 从文件dir_50.txt读入
输出: "实际参加测试的人数是:11"
"人均被测次数是:2.5"
解答:
方法一
f=open('dir_50.txt','r',encoding='utf-8')
lines=f.readlines()
f.close()
d={}
for line in lines:line=line.split('_')k=line[1][:-5]v=[]for c in eval(line[0]):if c !='0':v.append(c)d[k]=v #第一问结束
d1={}
for i in d:for j in d[i]:d1[j]=d1.get(j,0)+1 #第二问结束
s=0
for t in d1:s=s+int(d1[t])
print("实际参加测试的人数是:{}".format(len(d1)))
print("人均被测次数是:{:.1f}".format(s/len(d1))) #第三问结束
方法二:
f=open('dir_50.txt','r',encoding='utf-8')
lines=f.readlines()
f.close()
d={}
for line in lines:line=line.split('_')k=line[1][:-5]v=[]for c in eval(line[0]):if c !='0':v.append(c)d[k]=v #第一问结束
d1={}
for i in d:for j in d[i]:d1[j]=d1.get(j,0)+1 #第二问结束
s=0
for t in d1:s=s+int(d1[t])
print("实际参加测试的人数是:{}".format(len(d1)))
print("人均被测次数是:{:.1f}".format(s/len(d1))) #第三问结束
相关文章:
人脸识别测试数据分析
一个人脸识别研究小组对若干名学生做了人脸识别的测试,将测试结果写入到一个文件 dir_50.txt 中,每一行是一张照片的识别结果“_照片编号”“.jpg”的字符串组合,示例如下: [1709020621, 0]_116.jpg [1709020621]_115.jpg [17706…...
MySQL 5.7限制general_log日志大小
背景 需求: 在MySQL 5.7.41中开启general_log 并限制其大小,避免快速增长占用硬盘空间。 解决: 通过定时任务,执行简单的脚本,判断general_log 日志的大小,实现对通用查询日志的“每日备份”或“每日清…...
tomcat9~10猫闪退个人经验
java版本17与8 8版本有jre,java17没有jre 所以在java8版本中将jre和jdk路径一同添加环境是不会出现闪退的,tomcat9没有闪退 但是在10就闪退了,因为java版本太低 java17没有jre,但是可以通过一种方法添加jre到java17的目录 完…...
Linux之J2EE的项目部署及发布
目录 前言 一、会议OA单体项目windows系统部署 1.检验工作 1. 检验jar项目包是否可以运行 2. 验证数据库脚本是否有误 3. 测试项目功能 2. 部署工作 2.1 传输文件 2.2 解压项目及将项目配置到服务器中 2.3 配置数据库 2.4 在服务器bin文件下点击startup.bat启动项目 …...
基于闪电搜索算法的无人机航迹规划-附代码
基于闪电搜索算法的无人机航迹规划 文章目录 基于闪电搜索算法的无人机航迹规划1.闪电搜索搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用闪电搜索算法来优化无人机航迹规划。 …...
【网络安全 --- 文件上传靶场练习】文件上传靶场安装以及1-5关闯关思路及技巧,源码分析
一,前期准备环境和工具 1,vmware 16.0安装 若已安装,请忽略 【网络安全 --- 工具安装】VMware 16.0 详细安装过程(提供资源)-CSDN博客文章浏览阅读186次,点赞9次,收藏2次。【网络安全 --- 工…...
BUUCTF刷题记录
[BJDCTF2020]Easy MD51 进入题目页面,题目提示有一个链接,应该是题目源码 进入环境,是一个查询框,无论输入什么都没有回显,查看源码也没什么用 利用bp抓包查看有没有什么有用的东西 发现响应的Hint那里有一个sql语句&…...
黑客技术(网络安全)—小白自学
目录 一、自学网络安全学习的误区和陷阱 二、学习网络安全的一些前期准备 三、网络安全学习路线 四、学习资料的推荐 想自学网络安全(黑客技术)首先你得了解什么是网络安全!什么是黑客! 网络安全可以基于攻击和防御视角来分类&am…...
免登陆 同步脚本 zookeeper kafka集群详细安装步骤
一.免登陆配置 #修改注解名 vim /etc/hostname #修改host文件 vim /etc/hosts 192.168.1.10 kafka1 kafka1 192.168.1.11 kafka2 kafka2 192.168.1.12 kafka3 kafka3#免登陆生成秘钥和授权自动登陆 ssh-keygen -t rsa cd ~/.ssh shh-copy-id kafka1 shh-copy-id kafka2 shh-co…...
深入理解NLP
引子 自然语言处理(Natural Language Processing, NLP)是人工智能领域中的一个重要研究方向,它涉及了计算机与人类自然语言之间的交互和理解。 1. NLP的起源与发展 NLP的起源可以追溯到早期的机器翻译项目,随着科技的进步&…...
Python-自动化绘制股票价格通道线
常规方案 通过将高点/低点与其 2 个或 3 个相邻点进行比较来检测枢轴点,并检查它是否是其中的最高/最低点。对所有枢轴点进行线性回归以获得上方和下方趋势线。价格离开通道后建仓。通过这样做,我们得到如下所示的价格通道。我认为我们可以利用给定的数据取得更好的结果。...
CTF-Crypto学习记录-第四天 “ “ --- SHA1安全散列算法,实现原理。
文章目录 前言SHA-1加密算法介绍关于SHA-1和MD5 SHA-1 加密过程原文处理设置初始值和数据结构定义加密运算原理过程 在python中调用SHA-1 前言 MD5学习MD5加密算法 SHA-1加密算法介绍 SHA-1(Secure Hash Algorithm1,安全散列算法1)是一种密…...
海南海口大型钢结构件3D扫描全尺寸三维测量平面度平行度检测-CASAIM中科广电
高精度三维扫描技术已经在大型工件制造领域发挥着重要作用,特别是在质量检测环节,高效、高精度,可以轻松实现全尺寸三维测量。本期,CASAIM要分享的应用是在大型钢结构件的关键部位尺寸及形位公差检测。 钢结构件,是将…...
【PyQt学习篇 · ④】:QWidget - 尺寸操作
文章目录 QWidget简介QWidget大小位置操作案例一案例二 QWidget尺寸限定操作案例 内容边距案例 QWidget简介 在PyQt中,QWidget是一个基本的用户界面类,用于创建可见的窗口组件。QWidget可以包含多种类型的子组件,如QPushButton、QLabel、QLi…...
APC学习记录
文章目录 APC概念APC插入、执行过程逆向分析插入过程执行过程总结 代码演示参考资料 APC概念 APC全称叫做异步过程调用,英文名是 Asynchronous Procedure Call,在进行系统调用、线程切换、中断、异常时会进行触发执行的一段代码,其中主要分为…...
前端将图片储存table表格中,页面回显
<el-table :data"tableData" v-loading"loading" style"width: 100%" height"calc(100vh - 270px)" :size"tableSize"row-dblclick"enterClick"><el-table-column prop"name" label"文档…...
[论文阅读]Ghost-free High Dynamic Range Imaging with Context-aware Transformer
多帧高动态范围成像(High Dynamic Range Imaging, HDRI/HDR)旨在通过合并多幅不同曝光程度下的低动态范围图像,生成具有更宽动态范围和更逼真细节的图像。如果这些低动态范围图像完全对齐,则可以很好地融合为HDR图像,但…...
react高阶成分(HOC)例子效果
使用React函数式组件写了一个身份验证的一个功能,示例通过高阶组件实现的一个效果展示: import React, { useState, useEffect } from react;// 定义一个高阶组件,它接受一个组件作为输入,并返回一个新的包装组件 const withAuth…...
【24种设计模式】工厂模式(Factory Pattern)
工厂模式是一种创建型设计模式,它提供了一种创建对象的方式,而无需暴露对象创建的逻辑。在这篇博客中,我们将介绍工厂模式的概念、使用场景以及示例代码。 概念 工厂模式是一种创建型设计模式,它提供了一种创建对象的方式&#…...
树——对称二叉树
leetcode题目地址 树为空树,亦为对称二叉树树非空时,仅需判断其左右子树是否对称判断左右子树对称 (1) 左右子树是否为空,有一个为空 便不对称, 都为空或都不为空 可能对称 (2) 左右子树根节点值是否相同 (3) 判断 左子树 的 左子…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践,很多人以为AI已经强大到不需要程序员了,其实不是,AI更加需要程序员,普通人…...
