公司公司网站建设公司/市场营销比较好写的论文题目
1. 简介
pydantic 库是一种常用的用于数据接口 schema 定义与检查的库。
通过 pydantic 库,我们可以更为规范地定义和使用数据接口,这对于大型项目的开发将会更为友好。
当然,除了 pydantic 库之外,像是 valideer 库、marshmallow 库、trafaret 库以及 cerberus 库等都可以完成相似的功能,但是相较之下,pydantic 库的执行效率会更加优秀一些。
因此,这里,我们仅针对 pydantic 库来介绍一下如何规范定义标准 schema 并使用。
安装部署
pip install pydantic
2. 使用方法
2.1. schema 基本定义
pydantic 库的数据定义方式是通过 BaseMode l类来进行定义的,所有基于pydantic的数据类型本质上都是一个BaseModel类,它最基本的使用方式如下:
from pydantic import BaseModelclass Person(BaseModel):name: str
2.2. schema 基本实例化
调用时,我们只需要对其进行实例化即可,实例化方法有以下几种:
直接传值
p = Person(name="Tom")
print(p.json()) # {"name": "Tom"}
通过字典传入
p = {"name": "Tom"}
p = Person(**p)
print(p.json()) # {"name": "Tom"}
通过其他的实例化对象传入
p2 = Person.copy(p)
print(p2.json()) # {"name": "Tom"}
2.3. 异常处理
当传入值错误的时候,pydantic就会抛出报错,例如:
Person(person="Tom") # 定义为name,而非person
pydantic会抛出异常:
ValidationError: 1 validation errors for Person
namefield required (type=value_error.missing)
2.4. 参数过滤
另一方面,如果传入值多于定义值时,BaseModel 也会自动对其进行过滤。如:
p = Person(name="Tom", gender="man", age=24)
print(p.json()) # {"name": "Tom"}
可以看到,额外的参数 gender 与 age 都被自动过滤了。
通过这种方式,数据的传递将会更为安全,但是,同样的,这也要求我们在前期的 schema 定义中必须要尽可能地定义完全。
2.5. 阴性类型转换
此外,pydantic 在数据传输时会直接进行数据类型转换,因此,如果数据传输格式错误,但是可以通过转换变换为正确的数据类型是,数据传输也可以成功,例如:
p = Person(name=123)
print(p.json()) # {"name": "123"}
3. pydantic 数据类型
3.1. 基本数据类型
下面,我们来看一下pydantic中的一些常用的基本类型。
from pydantic import BaseModel
from typing import Dict, List, Sequence, Set, Tupleclass Demo(BaseModel):a: int # 整型b: float # 浮点型c: str # 字符串d: bool # 布尔型e: List[int] # 整型列表f: Dict[str, int] # 字典型,key为str,value为intg: Set[int] # 集合h: Tuple[str, int] # 元组
3.2. 高级数据结构
这里,我们给出一些较为复杂的数据类型的实现。
3.2.1. enum 数据类型
enum型数据类型我们可以通过enum库进行实现,给出一个例子如下:
from enum import Enumclass Gender(str, Enum):man = "man"women = "women"
3.2.2. 可选数据类型
如果一个数据类型不是必须的,可以允许用户在使用中不进行传入,则我们可以使用typing库中的Optional方法进行实现。
from typing import Optional
from pydantic import BaseModelclass Person(BaseModel):name: strage: Optional[int]
需要注意的是,设置为可选之后,数据中仍然会有age字段,但是其默认值为None,即当不传入age字段时,Person仍然可以取到age,只是其值为None。例如:
p = Person(name="Tom")
print(p.json()) # {"name": "Tom", "age": None}
3.2.3. 数据默认值
上述可选数据类型方法事实上是一种较为特殊的给予数据默认值的方法,只是给其的默认值为None。这里,我们给出一些更加一般性的给出数据默认值的方法。
from pydantic import BaseModelclass Person(BaseModel):name: strgender: str = "man"p = Person(name="Tom")
print(p.json()) # {"name": "Tom", "gender": "man"}
3.2.4. 允许多种数据类型
如果一个数据可以允许多种数据类型,我们可以通过 typing 库中的 Union 方法进行实现。
from typing import Union
from pydantic import BaseModelclass Time(BaseModel):time: Union[int, str]t = Time(time=12345)
print(t.json()) # {"time": 12345}
t = Time(time = "2020-7-29")
print(t.json()) # {"time": "2020-7-29"}
3.2.5. 异名数据传递
假设我们之前已经定义了一个schema,将其中某一个参量命名为了A,但是在后续的定义中,我们希望这个量被命名为B,要如何完成这两个不同名称参量的相互传递呢?
我们可以通过 Field 方法来实现这一操作。
from pydantic import BaseModel, Fieldclass Password(BaseModel):password: str = Field(alias = "key")
则在传入时,我们需要用key关键词来传入password变量。
p = Password(key="123456")
print(p.json()) # {"password": "123456"}
3.2.6. 多级 schema 定义
这里,我们给出一个较为复杂的基于pydantic的schema定义实现样例。
from enum import Enum
from typing import List, Union
from datetime import date
from pydantic import BaseModelclass Gender(str, Enum):man = "man"women = "women"class Person(BaseModel):name : strgender : Genderclass Department(BaseModel):name : strlead : Personcast : List[Person]class Group(BaseModel):owner: Personmember_list: List[Person] = []class Company(BaseModel):name: strowner: Union[Person, Group]regtime: datedepartment_list: List[Department] = []
需要注意的是,我们除了可以一步一步地实例化之外,如果我们已经有了一个完整的Company的内容字典,我们也可以一步到位地进行实例化。
sales_department = {"name": "sales","lead": {"name": "Sarah", "gender": "women"},"cast": [{"name": "Sarah", "gender": "women"},{"name": "Bob", "gender": "man"},{"name": "Mary", "gender": "women"}]
}research_department = {"name": "research","lead": {"name": "Allen", "gender": "man"},"cast": [{"name": "Jane", "gender": "women"},{"name": "Tim", "gender": "man"}]
}company = {"name": "Fantasy","owner": {"name": "Victor", "gender": "man"},"regtime": "2020-7-23","department_list": [sales_department,research_department]
}company = Company(**company)
3.3. 数据检查
pydantic 本身提供了上述基本类型的数据检查方法,但是,除此之外,我们也可以使用 validator 和 config 方法来实现更为复杂的数据类型定义以及检查。
3.3.1. validator用法
使用validator方法,我们可以对数据进行更为复杂的数据检查。
import re
from pydantic import BaseModel, validatorclass Password(BaseModel):password: str@validator("password")def password_rule(cls, password):def is_valid(password):if len(password) < 6 or len(password) > 20:return Falseif not re.search("[a-z]", password):return Falseif not re.search("[A-Z]", password):return Falseif not re.search("\d", password):return Falsereturn Trueif not is_valid(password):raise ValueError("password is invalid")
通过这种方式,我们就可以额外对密码类进行格式要求,对其字符数以及内部字符进行要求。
3.3.2. Config 方法
如果要对BaseModel中的某一基本型进行统一的格式要求,我们还可以使用Config方法来实现。
from pydantic import BaseModelclass Password(BaseModel):password: strclass Config:min_anystr_length = 6 # 令Password类中所有的字符串长度均要不少于6max_anystr_length = 20 # 令Password类中所有的字符串长度均要不大于20
4. 模型属性
dict() 模型字段和值的字典
json() JSON 字符串表示dict()
copy() 模型的副本(默认为浅表副本)
parse_obj() 使用dict解析数据
parse_raw 将str或bytes并将其解析为json,然后将结果传递给parse_obj
parse_file 文件路径,读取文件并将内容传递给parse_raw。如果content_type省略,则从文件的扩展名推断
from_orm() 从ORM 对象创建模型
schema() 返回模式的字典
schema_json() 返回该字典的 JSON 字符串表示
construct() 允许在没有验证的情况下创建模型
fields_set 初始化模型实例时设置的字段名称集
fields 模型字段的字典
config 模型的配置类
参考:
https://blog.csdn.net/codename_cys/article/details/107675748
https://www.cnblogs.com/dyl0/articles/16896330.html
相关文章:

Pydantic 实践
1. 简介 pydantic 库是一种常用的用于数据接口 schema 定义与检查的库。 通过 pydantic 库,我们可以更为规范地定义和使用数据接口,这对于大型项目的开发将会更为友好。 当然,除了 pydantic 库之外,像是 valideer 库、marshmallo…...

获取pandas中的众数
pandas.DataFrame 也有一个 mode() 方法。 以下面的 pandas.DataFrame 为例。 df pd.DataFrame({‘col1’: [‘X’, ‘X’, ‘Y’, ‘X’], ‘col2’: [‘X’, ‘Y’, ‘Y’, ‘X’]}, index[‘row1’, ‘row2’, ‘row3’, ‘row4’]) print(df) col1 col2 row1 X X row2…...

SOLIDWORKS Simulation2024仿真10大新功能
SOLIDWORKS Simulation新增功能 1. 增强型轴承接头 •通过指定压缩、拉伸和弯曲的刚度,轻松创建自定义轴承接头。•通过向非线性和大型位移算例添加自定义条件,提高模拟精度。 优点:使用功能强大的接口,更轻松 、 更 准 确 地 设…...

Java程序设计2023-第二次上机练习
这里要用到一些面向对象的基本知识 目录 7-1 伪随机数 输入格式: 输出格式: 输入样例: 输出样例: 7-2 jmu-Java-03面向对象基础-01-构造方法与toString 1.编写无参构造函数: 2.编写有参构造函数 3.覆盖toString函数: 4.对每个属性生成setter…...

如何在 uniapp 里面使用 pinia 数据持久化 (pinia-plugin-persistedstate)
想要在 uniapp 里面使用 pinia-plugin-persistedstate 会遇到的问题就是 uniapp里面没有浏览器里面的 sessionStorage localStorage 这些 api。 我们只需要替换掉 pinia-plugin-persistedstate 默认的储存 api 就可以了。使用 createPersistedState 重新创建一个实例, 把里面的…...

智慧矿山AI算法助力护帮板支护监测,提升安全与效率
在智慧矿山AI算法系列中,护帮板支护监测是保障矿山安全和提高生产效率的重要环节。护帮板作为矿山支护体系中的重要组成部分,在矿山生产中起到了关键的作用。那么,护帮板在哪种状态下是正常打开的呢?本文将对此进行介绍。 护帮板的…...

shell中的运算
目录 1.运算符号 2.运算指令 练习 1.运算符号 运算符号意义加法-减法*乘法/除法%除法后的余数**乘方自加一- -自减一<小于<小于等于>大于>大于等于等于ji ->jji*j*i->jj*i/j/i->jj/i%j%i->jj%i 2.运算指令 (()) //((a12))let //let a12 …...

【Java 进阶篇】解决Java Web应用中请求参数中文乱码问题
在Java Web应用开发中,处理请求参数时经常会遇到中文乱码的问题。当浏览器向服务器发送包含中文字符的请求参数时,如果不正确处理,可能会导致乱码问题,使得参数无法正确解析和显示。本文将详细探讨Java Web应用中请求参数中文乱码…...

51单片机-点阵屏led
代码配置 这样就能选择每一列哪个亮了 进行位选,段清零,这样就不会影响多列同时了 实现动画 1、使用文字摸提取文件,提取图案的16进制表示数组 offest作为偏移量,count作为计时。count10,偏移量加1,就相当于得到下一…...

Angular-03:组件模板
各种学习后的知识点整理归纳,非原创! 组件模板 ① 数据绑定② 属性绑定③ 类名绑定④ 样式绑定⑤ 事件绑定⑥ 获取原生DOM对象6.1 在组件模板中获取6.2 在组件类中获取 ⑦ 双向数据绑定⑧ 内容投影8.1 select选择器8.2 单槽投影8.3 多槽投影 ⑨ 安全操作…...

mysql 操作慢查询日志
1、mysql 批量插入300w数据 CREATE PROCEDURE test_insert_200w() BEGINDECLARE i INT;SET i1;WHILE i<3000000 DOINSERT INTO shop_user (password, telephone, username) VALUES (admin, 15510304125, concat(admin, i));SET ii1;END WHILE; END; //执行sql call test_in…...

illuminate/database 使用 二
上一篇文章写怎么单独使用illuminate/database,这回讲下怎么整合到项目里使用。为此特意看了下laravel对其使用。本篇文章,参照laravel的使用,简单实现。 一 原理 laravel 里使用illuminate/config。 illuminate/config composer 地址&…...

二叉树的概念
文章目录 二叉树一、树的概念1.树形结构1.1. 树的特点:1.2 概念:1.3 树的表示形式 2.树的应用 二、二叉树1.二叉数的概念2.满二叉树3.完全二叉树4.二叉树的性质练习: 二叉树 一、树的概念 1.树形结构 1.1. 树的特点: 1.根节点没…...

SpringCloud之Eureka的学习【详细】
目录 服务架构演变 单体架构 分布式架构 分布式架构需要考虑的问题 微服务 架构比较 微服务技术对比 服务拆分注意事项 案例 服务远程调用 RestTemplate Eureka注册中心 RestTemplate存在的问题 服务调用考虑的问题 Eureka的作用 搭建EurekaServer 服务注册 …...

学习ftp
文章目录 一、FTP介绍二、两种模式(主动模式和被动模式)三、FTP配置文件详解四、实际场景举例五、黑白名单六、网络限制 一、FTP介绍 1.FTP(File Transfer Protocol)是一种应用广泛且古老的互联网文件传输协议。 2.主要应用于互联…...

Android笔记(九):Compose组件的状态(一)
在使用Compose定义UI界面时,可以发现界面的变换往往与Compose组件内部的状态相关,当状态值发生变化时,Compose构成的可组合的界面也会刷新发生相应的变化。将在本笔记中将对可组合项的状态的定义、状态提升、状态丢失和状态的保存进行简单介绍…...

3.2. onnx export multi_batch
前言 将onnx bs=1 修改为多batch操作 参考链接: https://www.cnblogs.com/tangjunjun/p/16500116.html https://blog.csdn.net/weixin_43863869/article/details/128638397?spm=1001.2101.3001.6650.3&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault…...

探索低代码PaaS平台的优势与选择原因
PaaS是一种云产品,它为应用程序的开发和部署提供基础结构。它提供中间件、开发工具和人工智能来创建功能强大的应用程序,大多数PaaS服务都与存储和网络基础架构捆绑在一起,就像基础架构即服务(IaaS)一样,可…...

AD教程(一)工程组成及创建
AD教程(一)工程组成及创建 工程组成 原理图库 绘制电阻模型、芯片模型、电容模型等,即将元件模型绘制出来。 原理图 将绘制的原件模型放置到原理图中,然后再添加连接的导线、网络标号。器件和器件之间的连接关系,在原…...

SAP业务从ECC升级到SAP S/4HANA有哪些变化?有哪些功能得到增强?
SAP在2015年推出了新一代商务套件SAP S/4 HANA。 SAP S/4 HANA (全称SAP Business suite 4 SAP HANA),这款新产品完全构建于目前先进的内存平台SAP HANA 之上,同时采用现代设计理念,通过SAP Fiori 提供精彩的用户体验 (UX)。提供比ECC更强大的功能。S/4h…...

常用conda和pip命令总结
conda 环境相关命令 conda 新建环境命令 conda create -n env_name pythonx.xenv_name 是环境名,自己换成所要创建的虚拟环境的名字 pythonx.x 是版本号,比如3.7,3.8这样 查看conda环境下所有的虚拟环境 conda info -e conda env list两条…...

【计算机网络】路由器的工作原理
文章目录 输入端口处理和基于目的地转发交换结构输出端口处理排队问题参考资料 路由器的四个组件 输入端口(input port):执行物理层功能(input port 左边方框、output port 右边方框)、数据链路层功能(input/output port 中间方框…...

队列概念|循环队列的实现
前言 今天我们将学习循环队列实现,我们首先介绍队列的概念和结构,之后一步步讲解循环队列由来与实现。 一、队列的概念与结构 1、队列的概念 队列: 只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表。队列是…...

监控数据控中的数据表
背景: 在做一个项目的时候,每次代码分析的数据会写入到数据库,目前想实现当数据插入到数据库后,对新插入的数据进行监控解析。当有一个新纪录插入到数据表的时候,数据库可以自动解析新插入的数据记录。 思路如下&…...

进程替换..
1、单进程版 – 最简单的先看看程序替换 现象就是 1、我们用自己的进程封装了内置指令ls,并且代码中execl 后 printf 的after并没有打印出来。 2、谈进程替换的原理 单进程替换基本原理 上面例子中execl的做法非常简单粗暴,要调用ls,那么就把mycom…...

M1安装OpenPLC Editor
下载OpenPLC Editor for macOS.zip文件后,使用tar -zvxf命令解压,然后将"OpenPLC Editor"拖入到"应用程序"文件夹 右键点击"OpenPLC Editor",打开这个""文件,替换为以下内容 #!/bin/bash…...

STM32F10xx 存储器和总线架构
一、系统架构 在小容量、中容量和大容量产品 中,主系统由以下部分构成: 四个驱动单元 : Cotex-M3内核、DCode总线(D-bus)和系统总线(S-bus) 通用DMA1和通用DMA2 四个被动单元 内部SRAM 内部…...

并发编程
什么是并发编程? 并行:在同一个时间节点上,多个线程同时执行(是真正意义上的同时执行) 并发:一个时间段内,多个线程依次执行。 并发编程:在例如买票、抢购、秒杀等等场景下,有大量的请求访问…...

Lauterbach使用指南之RunTime功能
Lauterbach使用指南之RunTime功能 前言 首先,请问大家几个小小问题,你清楚: Lauterbach这个工具是干什么用的吗?在软件运行过程中如何测量两个运行point之间的runtime时间呢?Lauterbach的RunTime功能具体应当如何来操…...

GaussDB数据库管理系统介绍
1.GaussDB的发展 2.GaussDB的生态 内部: 云化自动化方案。通过数据库运行基础设施的云化将DBA(数据库管理员)和运维人员的日常工作 自动化。外部: 采用与数据库周边生态伙伴对接与认证的生态连接融合方案,解决开发者/DBA难获取、应用难对接等…...